期刊文献+

闭孔泡沫铝的塑性泊松比 被引量:5

PLASTIC POISSON'S RATIO OF CLOSED-CELL ALUMINUM FOAMS
原文传递
导出
摘要 闭孔泡沫铝的塑性泊松比在常见的唯象可压缩本构关系中是一个重要的参数,然而由于实验测试离散性比较大,长期以来并未受到足够重视.论文采用Kelvin十四面体模型构建出不同相对密度的闭孔泡沫铝三维细观模型并进行单轴压缩数值计算.结果表明,随着轴向应变的增加,泡沫铝塑性泊松比—轴向应变曲线呈倒S形,存在峰值和极小值;泡沫铝塑性泊松比曲线的极小值对应的轴向应变为泡沫铝的密实应变;随着相对密度的提高,泡沫铝的平均塑性泊松比增大.当闭孔泡沫铝的相对密度低于0.1时,其平均塑性泊松比接近于零;当闭孔泡沫铝相对密度大于0.1时,其平均塑性泊松比随相对密度的增加而呈线性从0.17增加到0.5. Of all the parameters that characterizing the mechanical properties of closed-cell aluminum foam (CCAF) ,the plastic Poisson's ratio is an important one. In this study,based on Kelvin model,a three- dimensional mesoscopic model of CCAFs is established. Plastic Poisson's ratios of the CCAFs with differ- ent relative densities under uniaxial quasi-static compression are analyzed numerically. The calculation re sults indicate that the plastic Poisson^s ratio of CCAFs changes like a inverse S shape with increasing axial strain. The average plastic Poisson's ratio of CCAFs has a close relationship with its relative density. When the relative density is less than 0.1 ,the average plastic Poisson's ratio of CCAFs is very small and can be ignored. When the relative density is larger than 0.1 ,the average plastic Poisson's ratio of CCAFs shows a linear increase with the increase of the relative densities and grows from 0.17 to 0.5.
出处 《固体力学学报》 CAS CSCD 北大核心 2015年第3期244-250,共7页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11372237 11402197) 国家重大基础研究计划项目(2011CB610305)资助
关键词 相对密度 细观模型 单轴压缩 塑性泊松比 变形模式 relative density, 3D mesoscopic model, uniaxial compression, plastic Poisson's ratio, deformation mode
  • 相关文献

参考文献23

  • 1Ashby M F, Evans A, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G. Metal Foams: A Design Guide[M]. Boston: Boston Oxford Auckland Johannesburg Melbourne New Delhi, 2000. 被引量:1
  • 2Deshpande V S, Fleck N A. Isotropic constitutive models for metallic foams [J]. Journal of the Me- chanics and Physics Solids, 2000, 48 (6-7): 1253- 1283. 被引量:1
  • 3Hallquist J O. LSTC. LS-DYNA User's Manual[M]. US: Livermore Software Technology Corporation, 2007. 被引量:1
  • 4Reyes A, Hopperstad O S,Berstad T, Hanssen A G, Langseth M. Constitutive modeling of aluminum foam including fracture and statistical variation of density [J]. European Journal of Mechanics-A/Solids, 2003, 22 (6) : 815-835. 被引量:1
  • 5Reyes A, Hopperstad O S, Berstad T, Langseth M. Implementation of a Constitutive Model for Alumi- num Foam Including Fracture and Statistical Variation of Density[C]. 8th International LS-DYNA Users Conference 2004, Material Technology : 11-24. 被引量:1
  • 6Reyes A, Hopperstad O S, Hanssen A G, Langseth M. Modeling of material failure in foam-based compo- nents[J]. International Journal Impact Engineering, 2004,30(7) :805-834. 被引量:1
  • 7Hanssen A G, Hopperstad O S, Langseth M, Ilstad H. Validation of constitutive models applicable to alu- minium foams[J]. International Journal of Mechanical Sciences, 2002,44 : 359-406. 被引量:1
  • 8Miller R E. A continuum plasticity model for the con- stitutive and indentation behaviour of foamed metals [J]. International Journal of Mechanical Sciences, 2000,42(3) :729-754. 被引量:1
  • 9ABAQUS User' s Manual[M]. Hibbitt, Karlsson Sorensen, Inc 2005. 被引量:1
  • 10Zhang J,Kikuchi N,Li V,Yee A F,Nusholtz G. Con- stitutive modeling of polymeric foam material subjec- ted to dynamic crash loading[J]. International Journal Impact Engineering,1998,21(5) :369-386. 被引量:1

二级参考文献17

  • 1卢子兴,石上路.低密度开孔泡沫材料力学模型的理论研究进展[J].力学与实践,2005,27(5):13-20. 被引量:25
  • 2石上路,卢子兴.基于十四面体模型的开孔泡沫材料弹性模量的有限元分析[J].机械强度,2006,28(1):108-112. 被引量:21
  • 3Zhou J, Shrotriya P, Soboyejo W O. Mechanisms and mechanics of compressive deformation in open-cell AI foams [J]. Mechanics of Materials, 2004,86 : 781-797. 被引量:1
  • 4Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminium alloy foams[J]. International Journal of Impact Engineering, 2000,24 : 277-298. 被引量:1
  • 5Marchi C S, Mortensen A. Deformation of open-cell aluminum foam[J]. Acta Mater, 2001,49:3 959-3 969. 被引量:1
  • 6Mccullough K Y G, Fleck N A, Ashby M F. Unixial stress-strain behaviors of aluminium alloy foams[J]. Acta Mater, 1999,47(8):2 323-2 330. 被引量:1
  • 7Nemat-Nasser S, Kang W J, McGee J D, et al. Experimental investigation of energy-absorption charateristies of components of sandwich structure[J]. International Journal of Impact Engineering, 2007,34:1 119-1 146. 被引量:1
  • 8Simone A E,Gibson L J.Effects of solid distribution on the stiffness and strength of metallic foams.Acta Mater,1998,46(6):2 139~2 150. 被引量:1
  • 9Grenestedt J L,Bassinet F.Influence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids.Int J Mech Sci,2000,42:1 327~1 338. 被引量:1
  • 10Mills N J,Zhu H X.The high strain compression of closed-cell polymer foams.J Mech Phys Solids,1999,47:669~695. 被引量:1

共引文献26

同被引文献47

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部