期刊文献+

广义径向基函数神经网络在热误差建模中的应用 被引量:7

Application of generalized radial basis function neural network to thermal error modeling
下载PDF
导出
摘要 针对现有的热误差建模方法建模效率低,模型预测精度不理想等问题,提出了广义径向基函数神经网络(RBF)建模方法并将其应用于数控机床热误差建模中。讨论了采用广义RBF神经网络进行热误差建模的原理及步骤。以数控导轨磨床主轴箱系统为例,布置了12个主轴热误差的关键温度测点,测得了2组独立的主轴箱系统热误差数据。将测得的数据分别用于建立主轴箱系统热误差广义RBF神经网络预报模型和验证模型的准确性。研究结果表明,热误差广义RBF神经网络模型具有预测精度高及泛化能力强的优点;与传统的RBF神经网络建模方法相比,提出的广义RBF神经网络建模方法建模效率更高,模型鲁棒性及预测性能更好,是一种可以用于数控机床热误差实时补偿的有效建模方法。 In considering of the lower efficiency and worse prediction accuracy of the existing thermal / error modeling methods, a generalized Radial Basis Function (RBF) neural network modeling approach was proposed to establish the thermal error model of Numerical Control(NC) machine tools. The model theory and the corresponding steps based on this method were discussed. An experiment on the spindle box of a NC guide rail grinder was performed, and two groups of independent thermal error data were obtained by setting twelve critical temperature measuring points of spindle thermal error. One group of the data was used for building the thermal error model of the spindle box system based on generalized RBF neural network method and the other was used for verifying the correction of the model. The study results show that the thermal error model based on generalized RBF neural network method has high prediction precision and good generalization ability. By comparing the generalized RBF neural network method with traditional RBF neural network modeling method, the former shows better efficiency, robustness and prediction capacity, and it is an effective modeling method for the real-time thermal error compensation of NC machine tools.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第6期1705-1713,共9页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51175161 No.51475152) 国家科技重大专项资助项目(No.2011ZX04003-011)
关键词 广义径向基函数 神经网络 热误差建模 聚类算法 泛化能力 鲁棒性 数控导轨磨床 generalized radial basis function neural network thermal error modeling clusteringalgorithm generalization ability robustness Numerical Control(NC) guide rail grinder
  • 相关文献

参考文献19

  • 1RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part II: thermal errors E.I:. International Journal o.f Ma chine Tools and Manufacture, 2000, 40 ( 9 ) : 1257-1284. 被引量:1
  • 2阳红,方辉,刘立新,张定金,殷国富,徐德炜.基于热误差神经网络预测模型的机床重点热刚度辨识方法研究[J].机械工程学报,2011,47(11):117-124. 被引量:20
  • 3田良巨..数控加工中心电主轴热误差研究[D].天津大学,2011:
  • 4TAN K K, HUANG S N, SEET H L. Geometrical error compensation of precision motion systems u sing radial basis function [J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49 (5): 984 991. 被引量:1
  • 5YANG S, YUAN J, NI J. The improvement of thermal error modeling and compensation on ma- chine tools by CMAC neural network [J]. Interna- tional Journal of Machine Tools and Manufac- ture, 1996, 36(4): 527-537. 被引量:1
  • 6满忠伟,汪世益.基于神经网络的机床-工件系统热误差补偿技术研究[J].制造技术与机床,2011(7):99-102. 被引量:2
  • 7张毅..数控机床误差测量、建模及网络群控实时补偿系统研究[D].上海交通大学,2013:
  • 8ILIYAS S A, ELSHAFEI M, HABIB M A, et al: RBF neural network inferential sensor for process emission monitoring [J]. Control Engi- neering Practice, 2013, 21(7) : 962-970. 被引量:1
  • 9YANG H, NI J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error [J]. International Journal of Ma chine Tools & Manufacture, 2005, 45 (4-5 : 455 465. 被引量:1
  • 10ER M J, WUSQ, LUJ, etal: Facerecogninon with radial basis function (RBF) neural networks [J]. IEEE Transactions on Neural Networks, 2002, 13(3), 697-710. 被引量:1

二级参考文献35

共引文献90

同被引文献72

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部