期刊文献+

CO2浓度对混溶态(CO2+正己烷)/盐水界面微观特性的影响

Influence of CO_2 fraction on micro interfacial properties of miscible(CO_2+n-hexane)/Na Cl interface
下载PDF
导出
摘要 在CO2以超临界状态封存于油气藏时,储层中流体间的界面性质是影响封存效率和封存量的重要因素。利用分子动力学模拟的方法,对330 K、20 MPa混溶条件下(CO2+正己烷)/Na Cl溶液系统的界面微观性质进行了研究,分析了混溶相中CO2摩尔分数变化时,界面处CO2和正己烷的亲水、疏水特性及其影响,为CO2地质封存提供理论依据。研究发现,随着混溶相中CO2摩尔分数的增加,界面厚度及粗糙度增大,分子渗透加深,热波动加剧。界面上CO2与水之间更强的相互作用造成了CO2注入过程中界面张力的降低。CO2表现出类似于表面活性剂的性质,并在CO2摩尔分数为65%(质量分数为50%)时,其界面累积量以及正己烷的驱离量最大。界面处存在特殊的分子微观结构,CO2、水及正己烷分子呈现特殊的排布方式。 In the geological carbon dioxide (CO2) sequestration in abandoned oil reservoirs, there usually exists a fluid system including CO2, oil and brine, where the interplay between them is very important for the successful CO2 storage. In this paper, molecular dynamics simulations were carried out to investigate the interfacial characteristics of the CO2, n-hexane and NaCl solution system with different CO2 fractions at the miscible state. CO2 and n-hexane formed a miscible phase, and a clear interface was observed to separate the CO2 and n-hexane mixture with brine. Both the interfacial width and roughness increased with increasing CO2 composition, indicating the stronger interfacial interactions when water molecules contacted with CO2, leading to the reduction of interfacial tension. The surface adsorption of CO2 reached the maximum when CO2 molar fraction equaled to 65%, as well as the deficiency of n-hexane. This implied the surfactant feature of CO2 and the hydrophobicity of n-hexane towards the interface investigated. A special micro structure was observed at the interface, where CO2, water and n-hexane molecules had own preferred arrangement tendency. The special interfacial characteristics found could explain the experimental IFT phenomena and the microstructure variation in the CO2 injecting process, and could provide some theoretical guidance for CO2 sequestration.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第7期2601-2606,共6页 CIESC Journal
基金 国家自然科学基金项目(51106027)~~
关键词 超临界CO2 CO2地质封存 界面 分子模拟 supercritical carbon dioxide CO2 geological storage interface molecular simulation
  • 相关文献

参考文献26

  • 1Wan X,Song Y,Zhang Y,Nishio M,Zhan Y,Jian W,Shen Y.Research progress of the interfacial tension in supercritical CO2-water/oil system [J].Energy Procedia,2013,37:6928-6935. 被引量:1
  • 2刘畅,陆小华.我国碳减排模式探讨——CCS路线与生物甲烷路线的比较[J].化工学报,2013,64(1):7-10. 被引量:16
  • 3Ameri A,Kaveh N S,Rudolph E S J,Wolf K H,Farajzadeh R,Bruining J.Investigation on interfacial interactions among crude oil-brine-sandstone rock-CO2 by contact angle measurements [J].Energy Fuels,2013,27:1015-1025. 被引量:1
  • 4Wang X,Gu Y.Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding processes [J].Ind.Eng.Chem.Res.,2011,50:2388-2399. 被引量:1
  • 5Rao D N,Lee J I.Determination of gas-oil miscibility conditions by interfacial tension measurements [J].J.Colloid Interface Sci.,2003,262(2):474-82. 被引量:1
  • 6Sun C,Chen G.Measurement of interfacial tension for the CO2 injected crude oil + reservoir water system [J].J.Chem.Eng.Data,2005,50:936-938. 被引量:1
  • 7Sandro R P da Rocha,Keith P Johnson.Molecular structure of the water-supercritical CO2 interface [J].J.Phys.Chem.B,2001,105:12092-12104. 被引量:1
  • 8Li X,Ross D A,Trusler J P M,Maitland G C,Boek E S.Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures [J].J.Phys.Chem.B,2013,117:5647-5652. 被引量:1
  • 9Zhao L,Lin S,Mendenhall J D,Yuet P K,Blankschtein D.Molecular dynamics investigation of the various atomic force contributions to the interfacial tension at the supercritical CO2-water interface [J].J.Phys.Chem.B,2011,115:6076-6087. 被引量:1
  • 10Fan Kangnian(范康年).Physical Chemistry(物理化学) [M].2nd ed.Beijing:Higher Education Press,2005:222. 被引量:1

二级参考文献16

  • 1李莉,袁文辉,韦朝海.二氧化碳的高温吸附剂及其吸附过程[J].化工进展,2006,25(8):918-922. 被引量:38
  • 2International Energy Agency. Carbon high [J]. Nature,2012(485): 552. 被引量:1
  • 3International Energy Agency. Energy TechnologyPerspectives [R]. Paris, 2008. 被引量:1
  • 4IPCC. IPCC Special Report on Carbon Dioxide Capture andStorage [R]. London, 2005. 被引量:1
  • 5Climate Group. CCS in China—Present,Challenge andOpportunity [R]. Beijing, 2010. 被引量:1
  • 6Sumida K,Rogow D L,Mason J A,et al. Carbon dioxidecapture in metal-organic frameworks [ J ]. Chem. Rev.,2012, 112 (2): 724-781. 被引量:1
  • 7Ramdin M, de Loos T W, Vlugt T J H. State-of-the-art ofCO2 capture with ionic liquids [J]. Ind. Eng. Chem. Res.,2012, 51 (24): 8149-8177. 被引量:1
  • 8Beer C, Reichstein M, Tomelleri E, et al. Terrestrial grosscarbon dioxide uptake: global distribution and covariationwith climate [J]. Science, 2010 (329) : 834. 被引量:1
  • 9Federal Ministry of Food-Agriculture and ConsumerProtection. Bioenergy in Germany—Facts and Figures [M].2012. 被引量:1
  • 10Cui Xiaolin (崔晓林),Ma Yuzhong (马玉忠).Tens ofthousands abnormal scrapped biogas tank [ J ]. 中国经济周刊,2009 (34) : 8-13. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部