期刊文献+

引入迁移学习的癫痫EEG信号自适应识别 被引量:4

Adaptive Recognition of Epileptic EEG Signal with Migration Learning
下载PDF
导出
摘要 在脑电图(EEG)信号识别中,EEG信号的采样环境、病人状态的多样性导致分类器训练所用的源域与分类器测试所用的目标域不匹配,分类器在目标域上表现不佳。为此,引入邻域适应策略,提出一种基于子空间相似度的改进主成分分析特征提取方法(SSM-PCA),在选择主成分时,考虑源域和目标域数据的几何和统计特性,并结合迁移学习分类器大间隔投射迁移支持向量机(LMPROJ),给出以SSM-PCA为基础的LMPROJ分类识别方法。实验结果表明,与结合PCA特征抽取技术和K近邻分类器实现的识别方法相比,该方法在识别正确率方面得到较大提升。 Many practical applications for epilepsy detection,the diversity of the health status of epilepsy patient and the timing of Electroencephalogram( EEG) signal measurements lead to the mismatching between the source domain used for classifier trained and target domain used for testing. The classifiers usually do not perform well on the target domain. In order to overcome this shortcoming,an improved Principal Component Analysis( PCA) feature extraction method called Subspace Similarity Measure Based Principal Component Analysis(SSM-PCA) is proposed,and a new classification method,named as SSM-PCA-LMPROJ is proposed by integrating SSM-PCA and the classical classifier Large Margin Projected Transductive Support Vector Machine ( LMPROJ ) . Experimental results show that the proposed method has obvious advantages compared with the traditional method,such as the method combining PCA and K Nearest Neighbor ( KNN) classifier.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第6期158-164,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61170122) 教育部新世纪优秀人才支持计划基金资助项目(NCET-12-0882)
关键词 特征迁移 迁移学习 脑电图信号 特征提取 分布多样性 主成分分析 feature migration migration learning Electroencephalogram (EEG) signal feature extraction diversityof distribution Principal Component Analysis(PCA)
  • 相关文献

参考文献22

  • 1Talevi A,Cravero M S,Castro E A.Discovery of Anticonvulsant Activity of Abietic Acid Through Application of Linear Discriminant Analysis[J].Bioorganic&Medicinal Chemistry Letters,2007,17(6):1684-1690. 被引量:1
  • 2Fong G C Y,Shah P U,Gee M N,et al.Childhood Absence Epilepsy with Tonic-clonic Seizures and Electroencephalogram3–4-Hz Spike and Multispike——Slow Wave Complexes:Linkage to Chromosome8q24[J].The American Journal of Human Genetics,1998,63(4):1117-1129. 被引量:1
  • 3Blanco S,Kochen S,Rosso O A,et al.Applying Timefrequency Analysis to Seizure EEG Activity[J].IEEE Engineering in Medicine and Biology Magazine,1997,16(1):64-71. 被引量:1
  • 4Zhang Zhong,Kawabata H,Liu Zhiqiang.EEG Analysis Using Fast Wavelet Transform[C]//Proccedings of IEEE International Conference on Systems,Man,and Cybernetics.Washington D.C.,USA:IEEE Press;2000:2959-2964. 被引量:1
  • 5K1ym1k M K,Güler I,Dizibüyük A,et al.Comparison of STFT and Wavelet Transform Methods in Determining Epileptic Seizure Activity in EEG Signals for Real-time Application[J].Computers in Biology and Medicine,2005,35(7):603-616. 被引量:1
  • 6Vivaldi E A,Bassi A.Frequency Domain Analysis of Sleep EEG for Visualization and Automated State Detection[C]//Proceedings of the28th Annual International Conference of IEEE Engineering in Medicine and Biology Society.Washington D.C.,USA:IEEE Press;2006:3740-3743. 被引量:1
  • 7Li Yandong,Ma Zhongwei,Lu Wenkai,et al.Automatic Removal of the Eye Blink Artifact from EEG Using an ICA-based Template Matching Approach[J].Physiological Measurement,2006,27(4):425-431. 被引量:1
  • 8Teixeiraa A R,Tomea A M,Stadlthannerb K,et al.KPCA Denoising and the Pre-image Problem Revisited[J].Digital Signal Processing,2008,18(4):568-580. 被引量:1
  • 9Xiong Yijun,Zhang Rong,Zhang Chong,et al.A Novel Estimation Method of Fatigue Using EEG Based on KPCA-SVM and Complexity Parameters[J].Applied Mechanics and Materials2013,37(3):965-969. 被引量:1
  • 10Polat K,Günes S.Classification of Epileptiform EEG Using a Hybrid System Based on Decision Tree Classifier and Fast Fourier Transform[J].Applied Mathematics and Computation,2007,187(12):1017-1026. 被引量:1

二级参考文献4

  • 1Alan Talevi,Mariana Sella Cravero,Eduardo A. Castro,Luis E. Bruno-Blanch.Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis[J].Bioorganic & Medicinal Chemistry Letters.2007(6) 被引量:1
  • 2Pablo Valenti,Enrique Cazamajou,Marcelo Scarpettini,Ariel Aizemberg,Walter Silva,Silvia Kochen.Automatic detection of interictal spikes using data mining models[J].Journal of Neuroscience Methods.2005(1) 被引量:1
  • 3G.C.Y. Fong,Pravina U. Shah,Manyee N. Gee,Jose M. Serratosa,Ignacio Pascual Castroviejo,Sonia Khan,Sangeeta H. Ravat,Jayanthi Mani,Y. Huang,H.Z. Zhao,Marco T. Medina,Lucy J. Treiman,Gregorio Pineda,Antonio V. Delgado-Escueta.Childhood Absence Epilepsy with Tonic-Clonic Seizures and Electroencephalogram 3–4-Hz Spike and Multispike–Slow Wave Complexes: Linkage to Chromosome 8q24[J].The American Journal of Human Genetics.1998(4) 被引量:1
  • 4Patrik Wahlberg,G?ran Salomonsson.Feature Extraction and Clustering of EEG Epileptic Spikes[J].Computers and Biomedical Research.1996(5) 被引量:1

共引文献8

同被引文献23

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部