期刊文献+

计算存储融合:从高性能计算到大数据 被引量:3

The Fusion of Computing and Storage: From HPC to Big Data
下载PDF
导出
摘要 随着军事信息化建设,物联网广泛应用于战场感知、智能控制等军事领域,产生了海量的半结构化、非结构化的数据,受到I/O性能尤其是网络传输、硬盘读写的限制,传统的计算系统难以满足海量数据处理的应用需求。因此,提出了一种计算存储融合方法,通过扩展Linux内核,将集群内所有节点上的内存、处理器等计算存储资源在系统空间映射成一个统一的资源池,实现了单一进程空间和单一内存空间,并在内存空间内建立一个分布式内存文件系统。计算时可将数据完全加载到内存中,计算过程中仅与内存文件系统交互,避免了硬盘读写对系统性能的影响;另外,通过进程迁移,避免了节点之间的大量数据传输。实验结果表明,该方法对数据密集型计算是有效的,能够大幅提升系统的计算性能。 With the development of military information, the internet of things is applied widely in some military domains as battlefield perception, intelligent control and so on. As a result, massive semi-structured and no-structure data is produced. Traditional computing system cannot deal with so much data because of the low performance of I/O interfaces especially net- work and hard disks. In this paper, a fusion method of computing and memory is proposed. By extending the Linux kernel, all memory and processors in a cluster are mapped a union resource pool in the system space and form a single memory space and process space. Based on this, distributed RAM file system is build in DRAM. So all data can be loaded into memory and application only read/write RAM file system and reduce hard disk access influence on computing system. On the side, by mi- grating processes between each node, data transportation on the network is avoided. The experimental results show that the method is efficient for data intensive applications and increase computing performance greatly.
出处 《指挥控制与仿真》 2015年第3期1-7,共7页 Command Control & Simulation
关键词 计算存储融合 内存计算 进程迁移 分布式内存文件系统 computing and storage fusion in memory computing process migration distributed RAM files system
  • 相关文献

参考文献9

  • 1Dean J, Ghemawat S. MapReduce: Simplified data pro- eessing on large clusters [ C ]//Pro(.. of lhe OSI)I 2004. 2004. 137-150. 被引量:1
  • 2Yang HC, Dasdan A, Hsiao RL, Parker DS. Map-Reduce-Merge: Simplified relational data processing on large cluster [ C ] ///Proc. ofthe SIGMOD 2007. 2007, 1029-1040. 被引量:1
  • 3mmel R. Google's MapReduce programming model:Revisi- ted. Science Computer Program[ J]. 2008,70( 1 ) : 1-30. 被引量:1
  • 4顾荣,严金双,杨晓亮,袁春风,黄宜华.Hadoop MapReduce短作业执行性能优化[J].计算机研究与发展,2014,51(6):1270-1280. 被引量:28
  • 5金海,廖小飞,叶晨成.内存计算:大数据处理的机遇与挑战[J].中国计算机协会通信,2013,9(4):40-46. 被引量:1
  • 6Lee BC, Ipek E, Mutlu O, Burger D. Architecting phase change memory as a scalable DRAM alternative[ C]/jln- ternational Symposium on Computer Architecture, 2009. 被引量:1
  • 7Dhiman G, Ayoub R, Rosing T. PDRAM: a hybrid PRAM and DRAM main memory system [ C] // Proceedings of the 46th Annual Design Automation Con- ference, July 2009. 被引量:1
  • 8Qureshi MK, Srinivasan V, Rivers JA. Scalable high per- formance main memory system using phase-change memory technology [ C ] //lnternationM Symposium on Computer Architecture, 2009. 被引量:1
  • 9Park KH, Park SK, Seok, Hwang W, Shin J, Choi JH, Park KW. Efficient memory management of a hierarchical and a hybrid main memory for MNMATE platform [ C ]// Proceedings of the 2012 International Workshop on Pro- gramming Models and Applications for Muhicores and Manycores, 2012. 被引量:1

二级参考文献4

共引文献27

同被引文献68

引证文献3

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部