期刊文献+

基于改进Hadoop的受限玻尔兹曼机云计算实现

Realization of RBM cloud computing based on improved Hadoop
下载PDF
导出
摘要 针对受限玻尔兹曼机(RBM)面对大数据时存在模型训练缓慢的问题,设计了基于Hadoop的RBM云计算实现方法.针对RBM训练方法,改进了Hadoop任务消息通信机制以适应模型迭代周期短的特点;设计了MapReduce框架,包括Map端实现吉布斯采样,Reduce端完成参数更新;依据Hadoop任务组合方式,将RBM的训练应用于深度玻尔兹曼机(DBM)中.通过手写数字识别实验证明,该计算方法在大规模数据条件下能够有效加速RBM训练,且适应于深度学习模型的学习. To resolve the slow training of Restricted Boltzmann Machine for handling large data the realization of RBM training based on cloud platform Hadoop is designed.In view of the training method of RBM Hadoop tasks message mechanism was improved to suit RBM′s short iteration cycle MapReduce framework was designed including Map function implemented Gibbs sampling and Reduce function completed parameter update based on Hadoop task combinations RBM′s cloud training was used in Deep Boltz?mann Machine′s training.The handwritten numeral recognition experiments show that this cloud training method can accelerate RBM training effective under large?scale data condition and work well in deep learning model training.
出处 《燕山大学学报》 CAS 北大核心 2015年第2期145-151,共7页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61032001)
关键词 云平台 受限玻尔兹曼机 并行编程 Hadoop cloud platform restricted Boltzmann machine Hadoop parallel programming
  • 相关文献

参考文献18

  • 1Salakhutdinov R, Hinton G E. Deep boltzmann machines [C]l1 Proceedings of the 12th conference on Artificial Intelligence and Statistics, Clearwater, FL, USA, 2009: 448-455. 被引量:1
  • 2Zhang Y, Salakhutdinov R, Chang H A, et al.Resource configurable spoken query detection using deep Boltzmann machines [C ]11 Proceedings of 2012 conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 5161-5164. 被引量:1
  • 3Ryan D P, Daley B J, Wong K, et al.Prediction of ICU in-hospital mortality using a deep Boltzmann machine and dropout neural net [C] /1 Proceedings of 2013 conference on Biomedical Sciences and Engineering, Oak Ridge, TN, USA, 2013: 211-216. 被引量:1
  • 4Srivastava N, Salakhutdinov R R, Hinton G E.Modeling documents with deep boltzmann machines [C]// Proceedings of the 29th conference on Uncertainty in Artificial Intelligence, Bellevue, W A, USA, 2013: 222-227. 被引量:1
  • 5Eslami SMA, Heess N, Williams C K I, et al.The shape boltzmann machine: a strong model of object shape [J].lnternational Journal of Computer Vision, 2014,107(2): 155-176. 被引量:1
  • 6Hinton G E.A practical guide to training restricted Boltzmann machines [R]. Toronto: Machine Learning Group University of Toronto, 2010: 129-136. 被引量:1
  • 7Wang C, Blei D M. Variational inference in nonconjugate models [J]. The Journal of Machine Learning Research, 2013, 14 ( 1): 1005-1031. 被引量:1
  • 8Apache Software Foundation. Apache Hadoop fair scheduler [EB/OL]. [2013-11-20]. http://hadoop. apche. org! common! docs! fair_scheduler.html. 被引量:1
  • 9Zaharia M, Borthakur D, Sarma J, et al.Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling [C]// Proceedings of the 5th European conference on Computer systems, Paris, France, 2010: 265-278. 被引量:1
  • 10Zhang S, Han J, Liu Z, et al.Accelerating MapReduce with distributed memory cache [C] // Proceedings of the 21th conference on Parallel and Distributed Systems. Piscataway, Shenzhen, Guangdong, China, 2009: 472-478. 被引量:1

二级参考文献37

  • 1倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 2张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:197
  • 3Salakhutdinov R,Mnih A, Hinton G. Restricted Boltzmann Ma- chines for Collaborative Filtering[C]Proeeedings of the 24th International Conference on Machine Learning. 2007:791-798. 被引量:1
  • 4Hinton G. A Practical Guide to Training Restricted Boltzmann Machines[EB/OL3. http://www, cs. toronto, edu/binton/ab- sps/guideTR, pdf, 2010-08-02. 被引量:1
  • 5Fischer A, Igel C. An Introduction to Restricted Boltzmann Ma- chines [C] Progress in Pattern Recognition, Image Analysis, Computer Vision and Applications. 2012:14-36. 被引量:1
  • 6Cueto M A, Morton J, Sturrnfels B. Geometry of the Restricted Boltzmann Machine[C]//AMS Special Session on Algebraic Methods in Statistics and Probability. 2010,516 : 135-153. 被引量:1
  • 7Jeffrey D, Sanjay G. Mapreduee: Simplified data processing on large clusters[C]Proeeedings of the Sixth Symposium on Op- erating Systems Design and Implementatior. 2004:137-149. 被引量:1
  • 8Apache HDFS Arebitecture[EB/OL. http://badoop, apache. org/does/hdfs/eurrent/dfs_design, htrnl, 2011-04-12. 被引量:1
  • 9Borzsonyi S, Kossmann D, Stocker K. The skyline operator[C]//International Conference onData Engineering, Heidelberg, 2001:421-430. 被引量:1
  • 10Chan C Y, JagadishHV, TanKL. Finding -dominant skyline inhigh dimensional space [C] //Proceedings of ACMSIGMOD InternationalConference onManagement of Data, NewYork, 2006:503-514. 被引量:1

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部