期刊文献+

串联机构运动分析的D-H四元数变换方法 被引量:2

D-H Quaternion Transformation Method for Kinematics Analysis of Serial Mechanisms
原文传递
导出
摘要 提出了串联机构运动分析的Denavit-Hartenberg(D-H)四元数变换方法.给出了点的映射的四元数描述方法和相邻连杆间变换的D-H四元数变换方法,建立了D-H四元数变换的矩阵演算方法,构造出了机器人学中经典的D-H齐次变换矩阵,证明了D-H四元数变换方法与D-H齐次变换矩阵方法的运动分析结果是一致的,从而从理论上证明了所提出的D-H四元数变换方法的正确性.在相邻连杆变换的D-H四元数变换公式基础上进一步推广,提出了任意个连杆的串联机构运动分析的D-H四元数变换方法.以PUMA机器人的运动分析为实例,采用D-H四元数变换方法进行运动分析,并验证了该方法的正确性和有效性.D-H四元数变换方法是串联机构运动分析的一种新方法,具有几何意义明确和计算简单的优点. A Denavit-Hartenberg (D-H) quaternion transformation method for kinematics analysis of serial mechanisms was presented. Firstly, the point mapping is described with quaternion. Then a D-H quaternion transformations method for motion transformation between adjacent linkages was proposed. Moreover, the matrix operation method of D-H quaternion transformations was illustrated to construct the classical D-H homogeneous transformation matrix in robotics, which can be theoretically proven that the pro- posed D-H quaternion transformation method is correct. Based on the above D-H quaternion transformation formula of motion transformation between adjacent linkages, the D-H quaternion transformation method for kinematics analysis of serial mechanisms with any number of linkages was further proposed. By analyzing the kinematics of PUMA robot, the effectiveness and correctness of the proposed method was vali- dated as well. The D-H quaternion transformation method has clear geometric meaning and the computation process is simple. The method is proved effective for kinematics analysis of serial mechanisms.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第2期59-63,73,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(51375058) 新世纪优秀人才支持计划项目(NCET-12-0796) 高等学校博士学科点专项科研基金项目(20120005110008)
关键词 串联机构 运动分析 D-H四元数 D-H矩阵 serial mechanism kinematics analysis Denavit-Hartenberg quaternions Denavit-Hartenberg matrix
  • 相关文献

参考文献6

  • 1勃拉涅茨BH,什梅格列夫斯基H П.四元数在刚体定位问题中的应用[M].梁振和,译.北京:国防工业出版社,1977. 被引量:1
  • 2程小红,宋玉靖.哈密尔顿与四元数[J].数学通讯(教师阅读),2006,20(5):47-48. 被引量:3
  • 3Denavit J, Hartenberg R S. A kinematic notation for low- er-pair mechanisms based on matrices [ J ]. Journal of Applied Mechanics, 1995, 22(6): 215-221. 被引量:1
  • 4李文亮著..四元数矩阵[M].长沙:国防科技大学出版社,2002:330.
  • 5廖启征.连杆机构运动学几何代数求解综述[J].北京邮电大学学报,2010,33(4):1-11. 被引量:21
  • 6熊有伦等编著..机器人学[M].北京:机械工业出版社,1993:352.

二级参考文献44

共引文献22

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部