摘要
森林训练样本自动提取算法(TDA)已在Landsat图像分析中得到了成功应用,笔者以广西苍梧县广平镇为研究区,采用2007年ALOS、2011年Rapid Eye遥感图像,试验该算法在高分辨率图像中的应用。研究首先根据图像光谱特性自动识别出纯净森林训练样本,然后依据归一化的整合森林指数图像提取两期森林/非森林分类结果并以此进行林地变化检测,经过精度分析结果表明,面积总误差为-2.6%,空间位置精度为87.7%,说明该算法可有效地从高分辨率遥感图像提取出纯净的森林训练样本,为森林/非森林分类以及变化检测提供基础数据。
The algorithm of forest training data automation( TDA) has been successfully applied to Landsat images. Tak.ing Guangping Town, Cangwu County, Guangxi Province as the study area, we selected the ALOS image of 2007 and the RapidEye image of 2011 to explore the algorithm.s application in high resolution remote sensing images. The pure forest training samples were automatically identifed at first, and the change detection result was then obtained by the forest/non.forest classification which extracted by the normalized integrated forest index image involved in the anlaysis.The ac.curate evaluation results showed that the total area error was-2.6% and the spatial location accuracy was 87.7%. It was shown that this algorithm could be effectively applied to high resolution remote sensing images to extract pure forest train.ing samples for the forest/non.forest classification and change detection as the original data.
出处
《南京林业大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期13-17,共5页
Journal of Nanjing Forestry University:Natural Sciences Edition
基金
广西林业科技项目(201423)
国土资源公益性行业科研专项项目(201211028-6)
关键词
高分辨率遥感
变化检测
自动提取
训练样本
整合森林指数
high resolution remote sense
change detection
automatic extraction
training data
integrated forest index