期刊文献+

Distribution function estimates by Wasserstein metric and Bernstein approximation for C^(-1) functions 被引量:2

Distribution function estimates by Wasserstein metric and Bernstein approximation for C^(-1) functions
下载PDF
导出
摘要 The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based on the classical Bernstein approximation, a scheme is presented. To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1 functions, which was rarely discussed in the classical approximation theory. Finally, we get a probability estimate by the statistical distance. The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learning. Based on the classical Bernstein approximation, a scheme is presented. To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1 functions, which was rarely discussed in the classical approximation theory. Finally, we get a probability estimate by the statistical distance.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第2期141-150,共10页 高校应用数学学报(英文版)(B辑)
基金 Supported by 973-Project of China(2006cb303102) the National Science Foundation of China(11461161006,11201079)
关键词 Wasserstein metric Bernstein approximation L1 norm approximation confidence interval Wasserstein metric Bernstein approximation L1 norm approximation confidence interval
  • 相关文献

参考文献9

  • 1V I Bogachevab, A V Kolesnikov. The Monge-Kantorovich problem: achievements, connections, and perspectives, Russian Math Surveys, 2012, 67: 785-890. 被引量:1
  • 2G Casella, R Berger. Statistical Reference, 2nd ed, Duxbury Advanced Series, 2002. 被引量:1
  • 3D L Donoho, I M Johnstone, G Kerkyacharian, D Picard. Density estimation by wavelet thresh- olding Ann Statist, 1996, 24: 508-539. 被引量:1
  • 4G Farin. Curves and Sufaces in Computer aided Geometric Design, Academic Press, 1988. 被引量:1
  • 5Y M Liu. Convergence order of wavelet thresholding estimator for differential operators on Besov spaces, Appl Comput Harmon Anal, 2012, 32: 342-356. 被引量:1
  • 6G Kerkyacharian, D Picard. Density estimation in Besov spaces, Statist Probab Lett, 1992, 13: 15-24. 被引量:1
  • 7P C Sikkema. Der weft einiger konstanten in der theorie der approximation mit Bernstein- Polynomen, Numer Math, 1961, 3: 107-116. 被引量:1
  • 8P C Sikkema. "Uber den grad der approximation mit Bernstein-Polynomen, Numer Math, 1959, 1: 221-239. 被引量:1
  • 9Z M Wu, X P Sun, L M Ma. Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates, Adv Comput Math, 2013, 38(1): 187-205. 被引量:1

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部