期刊文献+

FY-3B微波成像仪海洋数据无线电干扰识别 被引量:12

Identification of radio-frequency interference signal from FY-3B microwave radiation imager over ocean
原文传递
导出
摘要 中国风云3号B星(FY-3B)上的微波成像仪MWRI通过5个频率(10.65 GHz,18.7 GHz,23.8 GHz,36.5 GHz和89.0 GHz)的双极化通道对地球表面进行监测。研究表明,MWRI资料的低频波段数据中存在着无线电频率干扰(RFI)现象,这些污染信号对遥感数据和反演产品质量产生极大的影响。本文尝试使用多通道回归方法和双主成分分析(DPCA)方法识别MWRI的10.65 GHz水平通道亮温海洋区域中的RFI信号。结果表明,双主成分分析法可以有效地识别出海洋上的RFI信号。微波成像仪10.65 GHz水平通道亮温数据中的RFI信号主要分布在地中海等欧洲附近海域,也存在于美国、日本、澳大利亚等近岸地区。 Radio-Frequency Interference( RFI) is an increasingly severe problem for present and future microwave satellite missions. It causes serious problems to passive and active microwave sensing observations and to corresponding retrieval products.Detecting RFI signals is an important step before data can be used. The Microwave Radiation Image( MWRI) on board the Feng Yun( FY)-3B satellite can provide the brightness temperature data at 10. 65 GHz,18. 7 GHz,23. 8 GHz,36. 5 GHz,and89 GHz,each having dual channels at horizontal and vertical polarization states. RFI signals are present in MWRI data over land and ocean. RFI signals from data over ocean are more difficult to detect than those over land because of the low microwave emissivity of the sea surface. In general,RFI signals are detectable by using a multichannel regression method and retrieval chi-square probability. However,the two methods need auxiliary brightness temperature data within a certain period of time under conditions without ice and RFI,and located away from the coast. In this study,we use multichannel regression and Double Principal Component Analysis( DPCA) to identify the RFI signals from MWRI data over ocean. DPCA takes advantage of the decorrelation for RFI signals and the correlation characteristics of radiation data in different channels for nature surface,including snow cover and synoptic process. This method does not need auxiliary brightness temperature data,and it can been used to offer a real-time RFI detection method before data are provided. Compared with the results of multichannel regression,the results of DPCA can be considered effective in detecting RFI signals from MWRI ocean brightness temperatures. Moreover,the results obtained from the water near North America in winter indicate that multichannel regression produces false results over sea ice. The false signals could be avoided effectively in DPCA. The consistent results from different methods show that the RFI signals detected are credible. The RFI signals of MWR
作者 冯呈呈 赵虹
出处 《遥感学报》 EI CSCD 北大核心 2015年第3期465-475,共11页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点基础研究发展计划(973计划)(编号:2010CB951600) 公益性行业(气象)科研专项(编号:GYHY201406008) 江苏省普通高校研究生科研创新计划(编号:CXLX13_483 CXZZ13_0503) 江苏高校优势学科建设工程资助项目(编号:PAPD)
关键词 微波遥感 微波成像仪MWRI 无线电频率干扰RFI 双主成分分析DPCA microwave remote sensing, microwave radiation image, radio-frequency interference, double principal component analysis
  • 相关文献

参考文献26

  • 1Adams I S, Bettenhausen M H, Gaiser P W and Johnston W. 2010. Identification of ocean-reflected radio-frequency interference using WindSat retrieval chi-square probability. IEEE Geoscience and Remote Sensing Letters, 7(2) : 406 -410[ DOI: 10. ll09/LGRS. 2009.2037446 ]. 被引量:1
  • 2Basist A, Grody N C, Peterson T C and Williams C N. 1998. Using the special sensor microwave/imager to monitor land surface tempera- tures, wetness, and snow cover. Journal of Applied Meteorology, 37 (9) : 888 -911 [DOI: 10. 1175/1520 -0450(1998)037 <0888: UTSSMI >2.0. CO;2]. 被引量:1
  • 3Calvet J C, Wigneron J P, Mougin E, Kerr Y H and Brito J L S. 1994.Plant water content and temperature of the Amazon forest from satel- lite microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, 32(2) :397 -408 [DOI: 10. 1109/36. 295054]. 被引量:1
  • 4Dong C H, Yang J, Yang Z D, Lu N M, Shi J M, Zhang P, Liu Y J, Cal B and Zhang W J. 2009. An overview of a new Chinese weather satellite FY-3A. Bulletin of the American Meteorological Society, 90 (10) : 1531 - 1544 [ DOI: 10.1175/2009BAMS2798.1 ]. 被引量:1
  • 5Gaiser P W, St Germain K M, Twarog E M, Poe G A, Purdy W, Rich- ardson D, Grossman W, Jones W L, Spencer D, Golba G, Cleve- land J, Choy L, Bevilacqua R M and Chang P S. 2004. The Wind- Sat spaceborne polarimetric microwave radiometer: Sensor descrip- tion and early orbit performance. IEEE Transactions on Geoscience and Remote Sensing, 42 ( 11 ) : 2347 - 2361 [DOI: 10. 1109/ TGRS. 2004.836867 ]. 被引量:1
  • 6Hollinger J P, Peirce J L and Poe G A. 1990. SSM/I instrument evalua- tion. IEEE Transactions on Geoscience and Remote Sensing, 28 (5) : 781 - 790 [DOI: 10.1109/36. 58964 ]. 被引量:1
  • 7Jackson T J. 1993. III. Measuring surface soil moisture using passive microwave remote sensing. Hydrological Processes, 7 ( 2 ) : 139 - 152 [DOI : 10. 1002/hyp. 3360070205 ]. 被引量:1
  • 8Kawanishi T, Sezai T, Ito Y, Imaoka K, Takeshima T, Ishido Y, Shiba- ta A, Miura M, Inahata H and Spencer R W. 2003. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) , NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Transactions on Geoscience and Remote Sensing, 41 (2): 184 - 194 [ DOI: 10. ll09/TGRS. 2002. 808331 ]. 被引量:1
  • 9Kelly G and Bauer P. 2000. The use of AMSU-A surface channels to obtain surface emissivity over land, snow and ice for numerical weather prediction // Proceedings of the 6th International TOVS Study Conference. Budapest, Hungary : [ s. n. ] : 167 - 179. 被引量:1
  • 10Kelly R E, Chang A T, Tsang L and Foster J L. 2003. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transac- tions on Geoscience and Remote Sensing, 41 (2) : 230 -242 [DOI: 10.1109/TGRS. 2003. 809118 ]. 被引量:1

二级参考文献40

共引文献33

同被引文献111

引证文献12

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部