期刊文献+

利用0-1矩阵分解集成的极化SAR图像分类 被引量:8

Polarimetric SAR Image Classification via Weighted Ensemble Based on 0-1 Matrix Decomposition
下载PDF
导出
摘要 全极化合成孔径雷达(Pol SAR)图像蕴含更丰富的散射信息,具有更多的可用特征。如何使用这些特征是极化SAR图像分类中非常重要的一步,但是目前尚未对此提出非常明确的准则。为了能够有效地解决上述问题,该文提出一种基于特征加权集成的极化SAR图像分类算法。该算法采用0-1矩阵分解集成方法对包括不同特征的数据集进行学习获得相应加权系数,并通过对每个特征集获得的预测结果进行加权集成来提高极化SAR图像分类性能。首先,输入极化SAR数据,获得极化特征作为原始特征集,并对其进行随机抽取获得不同的特征子集;然后,使用0-1矩阵集成算法得到每个特征值相对应的加权系数;最后,通过对各个特征子集的预测结果进行集成得到最终极化SAR图像分类结果。实测L波段和C波段极化数据的实验结果表明,该算法可以有效地提高极化SAR图像分类的准确度。 For Polarimetric SAR (PolSAR), because it contains more scattering information, thus it can provide more available features. How to use the features is crucial for the PolSAR image classification, however, there are no existing specific rules. To solve the above problem, a supervised Polarimetric SAR image classification method via weighted ensemble based on 0-1 matrix decomposition is proposed. The proposed method adopts matrix decomposition ensemble to learn on different feature subsets to get coefficients, and weighting ensemble algorithm is employed via the predictive results to improve the final classification results. Firstly, some features are extracted from PolSAR data as initial feature group and are divided randomly into several feature subsets. Then, according to the ensemble algorithm to get the different weights based on the feature subsets, small coefficients are assigned to bad classification results to decrease the harmful impact of some features. The final classification result is achieved by combining the results together. The experimental results of L-band and C-band PolSAR data demonstrate that the proposed method can effectively improve the classification results.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1495-1501,共7页 Journal of Electronics & Information Technology
基金 国家973计划项目(2013CB329402) 国家自然科学基金(61271302 61272282 61202176 61271298) 国家教育部博士点基金(20100203120005)资助课题
关键词 极化合成孔径雷达 监督图像分类 集成学习 分类器集成 Polaximetric SAR (PolSAR) Supervised image classification Ensemble learning Classifier ensemble
  • 相关文献

参考文献21

  • 1Lee J S and Pottier E.Polarimetric Radar Imaging from Basic to Application[M].New York: CRC Press,2011: 1-51,66-72,229-247. 被引量:1
  • 2Ding Tao,Anfinsen S N,and Brekke C.A comparative study of sea clutter covariance matrix estimators[J].IEEE Geoscience and Remote Sensing Letters,2014,11(5): 1010-1014. 被引量:1
  • 3Cloude S R and Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2): 498-518. 被引量:1
  • 4Wang Chun-le,Yu Wei-dong,Wang Robert,et al..Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(4): 2278-2286. 被引量:1
  • 5Zhang Hong,Xie Lei,Wang Chao,et al..Investigation of the capability of H-decomposition of compact Polarimetric SAR[J].IEEE Geoscience and Remote Sensing Letters,2014,11(4): 868-872. 被引量:1
  • 6Freeman A and Durden S L.A three-component scattering model for polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3): 963-973. 被引量:1
  • 7Jiao Zhi-hao,Yang Jian,Yeh Chun-mao,et al..Modified three-component decomposition methord for polarimetric SAR data[J].IEEE Geoscience and Remote Sensing Letters,2014,11(1): 200-204. 被引量:1
  • 8刘高峰,李明,王亚军,张鹏,吴艳.一种改进的极化SAR自适应非负特征值分解[J].电子与信息学报,2013,35(6):1449-1455. 被引量:2
  • 9Yamaguchi Y,Moriyama T,Ishido M,et al..Four-component scattering model for polarimetric SAR image decomposition [J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(8): 1699-1706. 被引量:1
  • 10An W,Xie C,Yuan X,et al..Four-component decomposition of polarimetric SAR image with deorientation[J].IEEE Geoscience and Remote Sensing Letters,2011,8(6): 1090-1094. 被引量:1

二级参考文献32

  • 1丁晓松,金亚秋.海面上方运动目标和人造箔条云干扰的多普勒频移仿真[J].电波科学学报,2004,19(4):431-437. 被引量:7
  • 2J S Lee, M R Grunes, T L Ainsworth, et al.. Unsupervised classification using polarimetric decomposition and the complex Wishart elassifier[J]. IEEE Trans.Geosei. Remote Sensing, 1999, 37(5) : 2249-2258. 被引量:1
  • 3J S Lee, M R Grunes, E Pottier, et al.. Unsupervised terrain classification preserving polarimetric scattering characteristics [J]. IEEE Trans. Geosci. Remote Sensing, 2004, 42(4): 722-731. 被引量:1
  • 4S R Cloude and E Pottier. A review of target decomposition theorems in radar polarimetry [J]. IEEE Trans. Geosei. Remote Sensing, 1996, 34(2): 498-518. 被引量:1
  • 5S R Cloude, K P Papathanassiou and E Pottier. Radar polarimetry and polarimetrie interferometry[J]. IEICE Trans. Electron. , 2001, E84-C(12) : 1814-1822. 被引量:1
  • 6S R Cloude. Group theory and polarization algebra[J]. OPTIK, 1986, 75(1): 26-36. 被引量:1
  • 7Y Q Jin and S R Cloude. Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers[J]. IEEE Trans. Geosci. Remote Sensing, 1994, 32(6): 1179-1185. 被引量:1
  • 8J S Lee, D L Sehuler and T L Ainsworth. Polarimetric SAR data compensation for azimuth slope variation[J]. IEEE Trans. Geosci. Remote Sensing, 2000, 38(5): 2153-2163. 被引量:1
  • 9D L Sehuler and J S Lee. Compensation of terrain azimuthal slope effects in geophysical parameter studies using polarimetric SAR Data[J]. Remote Sensing of Environment, 1999, 39(17) : 139-155. 被引量:1
  • 10W L Cameron and L K Leung . Feature motivated polarization scattering matrix decomposition [C].Radar Conference, 1990, Record of the IEEE 1990 International, 1990,549-557. 被引量:1

共引文献8

同被引文献51

  • 1Cloude S. Polarisation: Applications in Remote Sensing[M]. London, U.K.: Oxford University Press, 2009. 被引量:1
  • 2Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoseience and Remote Sensing, 1996, 34(2): 498-518. 被引量:1
  • 3Freeman A and Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973. 被引量:1
  • 4Yainaguchi Y, Moriyama T, Ishido M, et al.. Four- component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706. 被引量:1
  • 5Wohlhart P, Kostinger M, Donoser M, et al.. Optimizing 1- Nearest prototype classifiers[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 460-467. 被引量:1
  • 6Quattoni A, Collins M, and Darrell T. Transfer learning for image classification with sparse prototype representations[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8. 被引量:1
  • 7Crammer K, Gilad-Bachrach R, Navot A, et al.. Margin analysis of the LVQ algorithm[C]. Advances in Neural Information Processing Systems, 2002: 462-469. 被引量:1
  • 8Kostinger M, Wohlhart P, Roth P M, et al.. Joint learning of discriminative prototypes and large margin nearest neighbor classifiers[C]. IEEE International Conference on Computer Vision, 2013:3112-3119. 被引量:1
  • 9Dai D and Gool L V. Ensemble projection for semi- supervised image classification[C]. IEEE International Conference on Computer Vision, 2013:2072-2079. 被引量:1
  • 10Wang D. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1):314-325. 被引量:1

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部