期刊文献+

Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane

Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane
原文传递
导出
摘要 The Cauchy problem for the wave equation with bi-inverse square potential on Euclidean plane is solved in terms of the two variables Appell F2 hypergeometric functions. Our principal tools are the Hankel transforms and the special functions of mathematical physics.
出处 《Journal of Partial Differential Equations》 CSCD 2015年第1期9-22,共14页 偏微分方程(英文版)
  • 相关文献

参考文献22

  • 1Taylor M. E., Partial Differential Equations I, Springer, New York, Berlin, Heidelberg, 1996. 被引量:1
  • 2Reed M. and Simon B., Methods of Moderne Mathematical Physics vol. Ⅱ, Academic press, New-York, 1979. 被引量:1
  • 3Case J. K. M., Singular potential. Phys. Rev., 80 (1950), 797-806. 被引量:1
  • 4Burg N. Planchon E, Stalker J. and Shadi Tahvildar-Zadeh A., Strichartz estimate for the wave equation with the inverse square potential, arXiv:math.AP/0207152v327 Aug., 2002. 被引量:1
  • 5Cheeger J., Taylor M., On the diffraction of waves by canonical singularites I. Comm. Pure Appl. Math., 35 (3) (1982), 275-331. 被引量:1
  • 6Lamb H., On the theory of waves propogated vertically in the atmosphere. Proc. Lonndon Math. Soc., 2 (7) (1909), 122-141. 被引量:1
  • 7Planchon F., Stalker J. and Shadi Tahvildar-Zadeh A., Dispersive estimate for the wave equa- tion with the inverse square potential, Discr. Contin. Dyna. Syst., 9 (6) (2003), 1337-1400. 被引量:1
  • 8Boyer C. P., Lie theory and separation of variables for the equation iUt + ( x1^2/α +x2^2/β ) U =0. SIAM ]. Math. Anal., 7 (1976), 230-263. 被引量:1
  • 9Folland G. B., Introduction to Partial Differential Equations, Princeton university press, Princeton N. J., 1976. 被引量:1
  • 10Erdelyi A., Magnus F., Oberhettinger E and Tricomi F. G., Higher Transcendental Functions, Tome I New York, Toronto, London, INC 1954. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部