Another Simple and Elementary Proof of the Classical Isoperimetric Inequality
Another Simple and Elementary Proof of the Classical Isoperimetric Inequality
摘要
In this short note we will give another simple and elementary proof of the classical isoperimetric inequality in the Euclidean plane.
基金
Supported by the National Science Foundation of China(10371039)Supported by the Shanghai Priority Academic Discipline
参考文献9
-
1BONNESEN T, FENCHEL W. Theorie der Convexen Korper[M]. New York: Chelsea Publishing, 1948. 被引量:1
-
2DO Carmo M P. Differential Geometry of Curves and Surfaces[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1976. 被引量:1
-
3CHAVEL I. Isoperimetric Inequalities, Differential Geometric and Analytic Perspectives[M]. Combridge: Combridge University Press, 2001. 被引量:1
-
4DERGIADES N. An elementary proof of the isoperimetric inequality[J]. Forum Gemetricorum, 2002, 2:129-130. 被引量:1
-
5HOPF H. Differential Geometry in the large[M]. Berlin: Springer-Verlag, 1983. 被引量:1
-
6HSIUNG C C. A First Course in Differential Geometry[M]. New York: John Wiley & Sons, 1981. 被引量:1
-
7MILLMEN R S, G D Parker. Elements of Differential Geometry[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1977. 被引量:1
-
8LAX P. A short path to the shortest path[J]. Amer Math Monthly, 1995, 102: 158-159. 被引量:1
-
9OSSERMAN R. The isoperimetric inequalities[J]. Bull Amer Math Soc, 1978, 84: 1182-1238. 被引量:1
-
1张勇赴.三角形的一个性质及其推广[J].数学通报,2009,48(10):61-64.
-
2MOUSTAPHA Mohamed Vall Ould.Wave Kernels with Bi-Inverse Square Potentials on Euclidean Plane[J].Journal of Partial Differential Equations,2015,28(1):9-22.
-
3XIONG Ge,ZOU Du.Orlicz mixed quermassintegrals Dedicated to Professor Ren De-lin on the Occasion of his 80th Birthday[J].Science China Mathematics,2014,57(12):2549-2562. 被引量:10
-
4马磊.关于平面凸多边形的一个Bonnesen型不等式[J].数学杂志,2015,35(1):154-158. 被引量:2
-
5邓光明.平面多边形面积计算的一般公式[J].长江工程职业技术学院学报,2000,17(3):50-51. 被引量:1
-
6ZENG ChunNa,MA Lei,ZHOU JiaZu,CHEN FangWeit.The Bonnesen isoperimetric inequality in a surface of constant curvature[J].Science China Mathematics,2012,55(9):1913-1919. 被引量:20
-
7朱方妍,张善奎,邓重阳.平面多边形增减顶点时中值坐标的计算[J].杭州电子科技大学学报(自然科学版),2015,35(1):104-106.
-
8李亭,李德宜,王斌.与仿射表面积有关的几何不等式[J].数学杂志,2013,33(6):1059-1063.
-
9喻德生.关于平面多边形有向面积的一些定理[J].赣南师范学院学报,1999(3):11-14. 被引量:23
-
10冉光华.平面多边形的一组优美的边斜率命题[J].中学数学教学参考,2016(12):32-33.