期刊文献+

基于权重阈值寻优的案例推理分类器特征约简 被引量:5

Feature reduction method based on threshold optimization for case-based reasoning classifier
下载PDF
导出
摘要 为提高案例推(case-based reasoning,CBR)分类器的分类准确率并降低时间复杂度,本文提出了一种基于权重阈值寻优的特征约简策略.首先通过基于数据驱动的方法对特征权重进行分配,得到每个特征的权重结果;其次,设计特征权重重要度阈值的适应度函数,并利用遗传算法对该重要度阈值进行优化搜索,最后根据得到的优化阈值与特征的权重分配情况,删除权重小于该阈值的特征从而完成特征的约简过程.通过对比实验,本文所提策略能够有效提高CBR分类器的分类准确率并降低时间复杂度,表明了权重阈值寻优约简策略的可行性与优越性.验证了本文方法不仅可以降低CBR分类器的时间复杂度,而且能够提高CBR的决策与学习能力. To improve the performance of case-based reasoning (CBR) classifier, we propose a feature reduction method based on threshold optimization for CBR classifier. First a data-driven method is adopted to conduct the feature weight distribution. Then, a weight threshold is introduced, where a genetic algorithm is utilized to obtain an appropriate threshold result, together with the feature weight and the threshold, the features of which the weights are lower than the threshold are deleted to accomplish the feature reduction process. The experimental results indicate that the weight distribution method and the threshold optimization method can improve the performance of CBR classifier, which confirms that the proposed reduction method is able to achieve a higher classification accuracy, decrease the time complexity, and improve the learning ability of CBR classifier.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第4期533-539,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61374143) 北京市自然科学基金项目(4152010) 城市轨道交通北京实验室课题资助~~
关键词 案例检索 特征权重 阈值寻优 特征约简 case retrieval feature weight threshold optimization feature reduction
  • 相关文献

参考文献18

  • 1SCHANK R. Dynamic Memory [M]. New York: Cambridge Univer- sity Press, 1982. 被引量:1
  • 2AAMODT A, PLAZA E. Case-based reasoning: foundational issues, methodological variations, and system approaches [J]. AI Communi- cations, 1994, 7(1): 39- 59. 被引量:1
  • 3FENTON B, MCGINNITY M, MAGUIRE L. Fault diagnosis of elec- tronic system using artificial intelligence [J]. IEEE Instrumentation & Measurement Magazine, 2006, 5(3): 16 - 20. 被引量:1
  • 4KAVITHA D M K, VENKATESH E An intelligent decision support system for e-purchasing using CBR and CF [J]. International Journal of Agent-Oriented Software Engineering, 2009, 3(3): 212 - 229. 被引量:1
  • 5LOPEZ B, POUS C, GAY P, et al. A framework for case-based med- ical diagnosis development and experimentation [J]. Artificial Intelli- gence in Medicine, 2011, 51(2): 81 - 91. 被引量:1
  • 6GU D X, LIANG C Y, BICHINDARUTZ I, et al. A case-based knowledge system for safety evaluation decision making of thermal power plants [J]. Knowledge-BasedSystems, 2012, 26(1): 185 - 195. 被引量:1
  • 7SAMPAIO L N, TEDESCO P, MONTEIRO J, et al. A knowledge and collaboration-based CBR process to improve network performance- related support activities [J]. Expert Systems with Applications, 2014, 41 (11): 5466 - 5482. 被引量:1
  • 8XU X, WANG K, MA W, et al. Improving the reliability of case- based reasoning systems [J]. International Journal of Computational Intelligence Systems, 2010, 3(3): 256 - 265. 被引量:1
  • 9GUO Y, HU J, PENG Y H. A CBR system for injection mould design based on ontology: a case study [J]. Computer-Aided Design, 2012, 44(6): 496 - 508. 被引量:1
  • 10SALAMO M, LOPEZ S M. Rough set based approaches to feature selection for Case-Based Reasoning classifiers [J]. Pattern Recogni- tion Letters, 2011, 32(2): 280 - 292. 被引量:1

二级参考文献71

共引文献197

同被引文献115

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部