期刊文献+

基于遗传算法改进的粒子滤波重采样模型(英文) 被引量:14

Improved Resampling Procedure Based on Genetic Algorithm in Particle Filter
下载PDF
导出
摘要 提出一种基于遗传算法改进的新粒子滤波算法,该算法对于每次迭代计算出的最差粒子并未简单地进行丢弃,而是将这些最差粒子利用生物遗传中的遗传性和变异性将其进行修正。该算法利用最差粒子数据与种群中特殊数据进行交叉变异方法来增强粒子种群中的多样性,从而有利于粒子滤波对机动目标的跟踪;同时保留部分粒子在未来进行唤醒也体现了多样性。该算法更有利于实现粒子滤波在机动目标跟踪的适应性,提高其跟踪效果。 Particle filtering is a nonlinear and non-Gaussian dynamical filtering system. It has found widespread applications in detection, navigation, and tracking problems. The strong maneuverability of target tracking brings heavy impact on particle attributes in resampling process of particle filters, such as, particle state, particle weights, and so on. This paper proposes a new particle filter algorithm based on genetic algorithm optimization. This algorithm combines the hereditability and aberrance of the genetic algorithm into the resampling procedure of particle filter to improve the adaptability of maneuvering target tracking.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第3期344-349,共6页 Journal of University of Electronic Science and Technology of China
基金 Support by the National Science Foundation of China(61172117)~~
关键词 遗传算法 机动目标跟踪 非线性滤波器 粒子滤波 重采样 genetic algorithm maneuvering target tracking nonlinear filtering particle filter particle resampling
  • 相关文献

参考文献20

  • 1ARORA A. A line in the sand: a wireless sensor network for target detection, classification, and tracking[J]. Comput Netw, 2004, 46(5): 605-634. 被引量:1
  • 2BUGALLO M F, LU T, DJURI'C P M. Target tracking by multiple particle filtering[C]//Proceedings of IEEE Aerospace Conference. Big Sky, MO, USA: IEEE, 2007: 153-156. 被引量:1
  • 3DJURI'C P M, LU T, BUGALLO F. Multiple particle filtering[C]//Proceedings of the IEEE 32nd International Conference on Acoustics, Speech and Signal Processing (ICASSP'2007). Honolulu, Hawaii, USA: IEEE, 2007: 1181-1184. 被引量:1
  • 4ISARD M, BLAKE A. Condensation-conditional density propagation for visual tracking[J]. IJCV, 1998, 29(1): 5-28. 被引量:1
  • 5ASLAM J, BUTLER Z, CONSTANTIN F V, et al. Tracking a moving object with a binary sensor network[C]//Proc 1st Int Conf Embedded Networked Sensor Syst. Los Angeles, CA, USA: [s.n.], 2003:150-161. 被引量:1
  • 6KIM W, MECHITOV K, CHOI J Y, et al. On target tracking with binary proximity sensors[C]//Proc 4th Int Syrup Inf Process Sensor Netw. Los Angeles, CA, USA: IPSN, 2005. 被引量:1
  • 7OH S, SASTRY S. Tracking on a graph[C]//Proc 4th Int Syrup InfProcess Sensor Networks. Los Angeles, CA, USA: IPSN, 2005. 被引量:1
  • 8GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46. 被引量:1
  • 9LASKA B N M, BOLIC M, GOUBRAN R A. Particle filter enhancement of speech spectral amplitudes[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010,18(8): 2155- 2167. 被引量:1
  • 10GUSTAFSSON F. Particle filter theory and practice with positioning applications[J]. IEEE A&E Systems Magazine. Part 2: Tutorlals-Gustafsson, 2010, 25(7): 53-81. 被引量:1

同被引文献89

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部