期刊文献+

基于激光雷达与改进AMCL的爬壁机器人定位方法 被引量:8

A localization method of wall-climbing robot based on lidar and improved AMCL
下载PDF
导出
摘要 锅炉爬壁机器人在实际应用中存在轮式编码器与惯性测量单元(IMU)使用受限,车轮与金属水冷壁之间容易打滑等问题。针对以上因素导致机器人全局定位与位姿跟踪性能下降,提出一种基于激光里程计与改进自适应蒙特卡洛(AMCL)的全局定位方法。首先,使用基于PL-ICP方法的激光里程计替代传统轮式、惯性里程计;然后将遗传学中DNA交叉变异的思路引入AMCL的粒子迭代过程中,提出一种遗传算法改进的自适应蒙特卡洛定位方法,缓解AMCL粒子贫化导致位姿跟踪性能下降和恢复定位速度慢的问题。经实验验证,该方法的绝对定位误差控制在12.7 cm,精度较普通AMCL方法提升32.4%;该方法在机器人发生轻微打滑时定位结果几乎不受影响,发生较大滑动时恢复定位的速度较普通AMCL方法提升35%。 In practical applications,the boiler wall-climbing robot has some problems,such as limited use of wheel encoders and inertial measurement units(IMU),and easy slippage between the wheels and the metal water wall.In the view of the above factors leading to the decline of robot global localization and pose tracking performance,a robot global localization method based on the laser odometry and the improved adaptive Monte Carlo localization(AMCL)is proposed.Firstly,the laser odometry based on PL-ICP method is adopted to replace the traditional wheel and inertia odometry.Secondly,the idea of DNA cross mutation in genetics is introduced into the particle sampling process of AMCL algorithm to design an improved AMCL method based on genetic algorithm,which is able to alleviate the problems of posture tracking performance degradation and slow location recovery caused by AMCL particle depletion.Experimental results show that the absolute localization error of this method is controlled within 12.7 cm and the accuracy is 32.4%higher than that of AMCL method.The localization result of this method is almost unaffected when the robot slips slightly.The speed of the system to restore the localization is 35%higher than that of the ordinary AMCL method when the robot slips greatly.
作者 王子润 燕必希 董明利 王君 孙鹏 Wang Zirun;Yan Bixi;Dong Mingli;Wang Jun;Sun Peng(Key Laboratory of the Ministry of the Education for Optoelecronic Measurement Technology and Instrument,Beijing Information Science&Technology University,Beijing 100192,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第12期220-227,共8页 Chinese Journal of Scientific Instrument
基金 教育部“创新团队发展计划”(IRT_16R07) 北京信息科技大学促进高校内涵发展科研水平提高项目(2020KYNH223)资助
关键词 自适应蒙特卡洛 PL-ICP 遗传算法 粒子贫化 位姿跟踪 adaptive Monte Carlo PL-ICP genetic algorithm particles depletion pose tracking
  • 相关文献

参考文献12

二级参考文献93

共引文献125

同被引文献62

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部