期刊文献+

基于双调Q小波变换的瞬态成分提取及轴承故障诊断应用研究 被引量:9

Transient feature extraction based on double-TQWT and its application in bearing fault diagnosis
下载PDF
导出
摘要 因轴承的剥落、裂纹等局部故障易致运行时振动信号中出现瞬态成分,而轴承故障振动信号为非平稳信号,含高、低振荡成分,传统的线性信号处理方法及基于频率的分解方法均存在一定局限性。对此,研究基于信号振荡特征而非频率特征的双调Q小波变换,设定不同Q因子小波将轴承故障信号非线性分解成低、高振荡及噪声成分,轴承故障瞬态成分对应低振荡成分,提取低振荡成分即能实现轴承故障瞬态成分提取。通过轴承故障状态下瞬态成分检测表明,该方法能有效提取轴承故障瞬态成分。经与均值滤波、小波阈值及经验模态分解(EMD)等方法比较,验证该方法的优越性。 Local faults in rotating machinery bearings are easy to cause transient impulse response components m vibration signals. In order to realize bearing fault diagnosis under strong noise conditions, it is crucial to extract fault features from vibration signals. But a bearing fault vibration signal is a non-stationary one, it consists of high and low resonance components, traditional linear methods and signal decomposition methods based on frequency have certain limitations. To overcome these limitations, a nonlinear signal analysis method named double tunable Q-factor wavelet transformation (double-TQWT) was proposed, it was based on signal resonance characteristics rather than frequency features. By using the double-TQWT, a bearing fault vibration signal was decomposed into high and low resonance components based on different resonance characteristics. The bearing fault transient component had a low Q-factor and was decomposed into low resonance components. Extracting these low resonance components could realize extracting bearing fault transient components. The transient components for bearing fault signals under strong noise conditions were extracted and analyzed. The results showed that the new method is superior to the average filtering method, the wavelet threshold algorithm, and the EMD.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第10期34-39,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51375322)
关键词 滚动轴承 故障诊断 双调Q小波变换 振荡特征 rolling bearing fault diagnosis double-TQWT resonance characteristic
  • 相关文献

参考文献12

  • 1王国彪,何正嘉,陈雪峰,赖一楠.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72. 被引量:280
  • 2郝如江,卢文秀,褚福磊.滚动轴承故障信号的数学形态学提取方法[J].中国电机工程学报,2008,28(26):65-70. 被引量:41
  • 3王诗彬,许佳,朱忠奎.瞬态成分参数的最小二乘法辨识及其轴承故障特征提取应用[J].机械工程学报,2012,48(7):68-76. 被引量:7
  • 4He Qing-bo, Du Ru-xu. Mechanical watch signature analysis based on wavelet decomposition [ J ]. International Journal of Wavelets, Multiresolution and Information Processing, 2009, 7(4) : 491 -512. 被引量:1
  • 5Wang Shi-bin, Huang Wei-guo, Zhu Zhong-kui. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis [ J ]. Mechanical Systems and Signal Processing, 2011, 25 ( 4 ) : 1299 - 1320. 被引量:1
  • 6Yan R Q, Gao R X. An efficient approach to machine health diagnosis based on harmonic wavelet packet transform [ J ]. Robotics and Computer-Integrated Manufacturing, 2005, 21(4) :291 -301. 被引量:1
  • 7Cao Hong-rui, Lei Ya-guo, He Zheng-jia. Chatter identification in end milling process using wavelet packets and Hilbert-Huang transform[ J ]. International Journal of Machine Tools and Manufacture, 2013, 69 : l 1 - 19. 被引量:1
  • 8Selesnick I W. Wavelet transform with tunable Q-factor [ J ]. Ieee Transaction Signal Processing, 2011, 59 ( 8 ) : 3560 - 3575. 被引量:1
  • 9Cai Gai-gai, Chen Xue-feng, He Zheng-jia. Sparsity- enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox [ J ]. Mechanical Systems and Signal Processing, 2013, 41 (1/2) : 34 -53. 被引量:1
  • 10Selesnick I W. Resonance-based signal decomposition: a new sparsity-enabled signal analysis method [ J 3. Signal Processing, 2011, 91 (12): 2793-2809 . 被引量:1

二级参考文献103

共引文献416

同被引文献92

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部