期刊文献+

基于节点相似度的社团检测 被引量:2

Community detection based on node similarity
下载PDF
导出
摘要 针对目前社团结构检测算法计算量大以及不稳定的问题,在经典的Newman快速与LPAm的基础上提出了一种基于局部信息的社团发现新算法。算法利用节点度和共享邻居数定义节点相似度,并结合两个预设参数,逐步优化社团结构。性能分析证明,该算法不仅具有线性阶时间复杂度,而且是一种稳定的算法。实验结果表明,该算法在准确度上优于Newman快速和LPAm,且可行与有效。 In view of the problems of large amount of calculation and instability of present community structure detection algorithms, this paper puts forward a new community structure detection algorithm of local information based on the New-man fast algorithm and LPAm algorithm. The algorithm uses node degrees and shared neighbor numbers to define nodes similarity, and uses two preset parameters to improve the structure of society gradually. Algorithm performance analysis has showed that the algorithm not only has linear time complexity, but also is a stability algorithm. The experimental results have showed that the proposed algorithm performs well than the Newman fast algorithm and LPAm algorithm in terms of accuracy, and it’s feasible and effective.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第9期77-81,共5页 Computer Engineering and Applications
基金 辽宁省高等学校杰出青年学者成长计划(No.LJQ2012027)
关键词 社团结构检测 节点相似度 线性阶时间复杂度 稳定 community structure detection node similarity linear time complexity stability
  • 相关文献

参考文献15

  • 1Newman M E J.Detecting community structure in networks[J].European Physical Journal B,2004,38(2):321-330. 被引量:1
  • 2杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:208
  • 3Clauset A.Finding local community structure in networks[J].Physical Review E,2005,72(2):26-132. 被引量:1
  • 4Givran M,Newman M E J.Community structure in social and biological networks[EB/OL].(2008-12-07).http://www.santafe.edu/research/publications/workingpapers/01-12-077.pdf. 被引量:1
  • 5Newman M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69(6):66-133. 被引量:1
  • 6Barber M J,Clark J W.Detecting network communities by propagating labels under constraints[J].Physical Review E,2009,80(4):32-101. 被引量:1
  • 7Kernighan B W,Lin S.A efficient heuristic procedure for partitioning graphs[J].Bell System Technical Journal,1970,49(2):291-307. 被引量:1
  • 8Guimera R,Lan A.Functional canography of complex metabolic networks[J].Nature,2005,433(7028):895-900. 被引量:1
  • 9Frey B J,Dueck D.Clustering by passing messages between data points[J].Science,2007,315:972-976. 被引量:1
  • 10汪小帆,李翔,陈关荣编著..复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.

二级参考文献56

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442. 被引量:1
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512. 被引量:1
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a. 被引量:1
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382. 被引量:1
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826. 被引量:1
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900. 被引量:1
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818. 被引量:1
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248. 被引量:1
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663. 被引量:1
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667. 被引量:1

共引文献207

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部