期刊文献+

GFN:基于“群”思想对Fast-Newman算法改进的复杂网络聚类算法

GFN:an improved Fast-Newman clustering algorithm in complex networks based on the group concept
下载PDF
导出
摘要 针对目前复杂网络优化聚类算法目标函数的有偏性影响聚类精度的问题,提出了"群"的概念,实现了对节点在聚类过程中局部信息决策环境的划定。提出了基于"群"概念改进的网络模块性评价函数,并以该函数作为目标函数对Fast-Newman(FN)算法进行了改进。在不同类别数据集上进行的聚类实验的结果表明,基于"群"思想改进的FN算法(GFN)在复杂网络中的聚类精度比FN算法平均提高了约70%,从而验证了"群"思想在揭示真实簇结构过程中的有效性。 To deal with the problem that the object function of existing optimized clustering algorithms are biased, which may affect the accuracy of the clustering, the concept of groups was proposed in this paper, to model the local con- text of nodes during the clustering process. An improved modularity function based on the concept of groups was giv- en, and the GFN, a clustering algorithm derived from the well-known Fast-Newman algorithm. Experiments on differ- ent datasets showed that the new method increased the clustering accuracy by 70% on average compared with the original version, proving that the group concept is significant in depicting the actual clustering structures in real net- works.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第10期1016-1023,共8页 Chinese High Technology Letters
基金 国家自然科学基金(60873241 61170296 61190120) 软件开发环境国家重点实验室基金(SKLSDE-2012ZX-17) 航空科学基金(20091951020) 新世纪优秀人才支持计划(NECT-09-0028) 北京自然科学基金(4123101)资助项目
关键词 复杂网络 聚类算法 模块度评价函数 FAST Newman(FN)算法 complex network, clustering algorithm, group, modularity evaluation function, Fast-Newman ( FN )algorithm
  • 相关文献

参考文献23

  • 1Alessandro V. Complex networks:the fragility of interde- pendency. Nature, 2010,464 (7291 ) : 984-985. 被引量:1
  • 2Song C M,Qu Z H,Nicholas B. Limits of predictability in human mobilit. Science ,2010,327 : 1018-1021. 被引量:1
  • 3Alessandro V. Predicting the behavior of techno-social sys- tem. Science,2009,325:425-428. 被引量:1
  • 4Newman MEJ. Modularity and community strueture in net- works. National Academy of Science, 2006, 103 ( 23 ) : 8577-8582. 被引量:1
  • 5Shiga M, Takigawa I, Mamitsuka H. A spectral clustering approach to optimally combining numerical vectors with amodular network. In : Proceedings of the 13th ACM SIGK- DD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2007. 647 -656. 被引量:1
  • 6White S, Smyth P. A spectral clustering approach to find- ing communities in graphs. In: Proceedingsof the 5th SI- AM International Conference on Data Mining, Philadel- phia, USA, 2005.76-84. 被引量:1
  • 7Donetti L, Munoz M A. Improved spectral algorithm for the detection of network communities. In:Proceedings of the 8th International Conferenceon Modeling Cooperative Be- havior in the Social Sciences, New York, USA,2005. 779 : 104-107. 被引量:1
  • 8Newman MEJ. Detecting community structure in networks. European Physical Journal(B) ,2004,38 ( 2 ) : 321-330. 被引量:1
  • 9Flake G W, Lawrence S, Giles C L. Self-organization and identification of Web communities. IEEE Computer,2002, 35(3) :66-71. 被引量:1
  • 10Girvan M, Newman MEJ. Community structure in social and biological networks. National Academy of Science, 2002,9(12) :7821-7826. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部