期刊文献+

改进罚函数法与蝙蝠算法在约束优化中的应用 被引量:6

Application of modified penalty function method and bats algorithm in constrained optimization
下载PDF
导出
摘要 设计了一种基于自适应罚函数法和改进蝙蝠算法的约束优化问题求解方法。提出了一种自适应罚函数法,该处理方法综合考虑了约束违反的情况和进化过程的特点,如果某个约束违反的次数越多,则证明该约束越强,赋予惩罚系数越大;种群中的不可行解的数量越多,为保持种群的多样性,则约束应该取较小的值,即惩罚系数取较小的值。提出了一种改进的蝙蝠算法,利用混沌的遍历性特点产生初始种群,增强了初始种群的多样性和种群的质量;在考虑了脉冲响度的蝙蝠算法局部搜索中,融入了交叉操作;为防止算法在后期陷入局部最优解,引进了变异操作,保证了群体的多样性。将自适应罚函数法与改进的蝙蝠算法融合起来求解约束优化问题,4个复杂的标准测试函数和2个工程实际问题证明了该约束优化求解方法的可行性和有效性。 A solving method for constrained optimization problem based on adaptive penalty function and improved bats algorithm is designed. An adaptive penalty function method is proposed, which both takes the circumstances of constraint violations and characteristics of evolutionary process into consideration. The more frequently a constraint is violated, the more powerful it is, the larger penalty coefficient is given to it. The more infeasible solutions in the population, the smaller the constrain should be, in other words, the smaller the penalty coefficient should be, in order to keep the diversity of the population. An improved bats algorithm is proposed, which generates the initial population by using the ergodicity of chaos, and enhances the quality of the initial population and diversity of population. In the local search of bats algorithm which takes the pulse loudness into consideration, crossover operation is added. In order to prevent the algorithm from falling into local optimal solution in the late, variation operation is added, which ensures the diversity of the population. Then adaptive penalty function and improved bats algorithm are mixed to solve constrained optimization problem, and 4 complex stan-dard test functions and 2 practical engineering problems prove the feasibility and effectiveness of the solving methods for constrained optimization problem.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第9期62-67,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60974048) 湖南省重点建设学科资助 湖南省自然科学基金(No.12JJ2040) 湖南省科技厅计划项目资助(No.2014GK3033 No.2013FJ6073) 湖南省教育厅项目资助(No.13C435)
关键词 蝙蝠算法 自适应罚函数 约束优化问题 bats algorithm adaptive penalty function constrained optimization problem
  • 相关文献

参考文献13

  • 1Long W,Liang X M,Huang Y F,et al.A hybrid differential evolution augmented Lagrangian method for constrained numerical and engineering optimization[J].Computer-Aided Design,2013,45(12):1562-1574. 被引量:1
  • 2Amirjanov A.The development of a changing range genetic algorithm[J].Computer Methods in Applied Mechanics and Engieering,2006,195(19-22):2495-2508. 被引量:1
  • 3Ma H P,Simon D.Blended biogeography-based optimization for constrained optimization[J].Engineering Applications of Artificial Intelligence,2011,44(3):517-525. 被引量:1
  • 4Le Riche R G,Knopf-Lenoir C,Haftka R T.A segregated genetic algorithm for constrained structural optimization[C]//Proceedings of the 6th International Conference on Genetic Algorithms.San Francisco,CA:Morgan Kaufman,1995:558-565. 被引量:1
  • 5吴志远,邵惠鹤,吴新余.基于遗传算法的退火精确罚函数非线性约束优化方法[J].控制与决策,1998,13(2):136-140. 被引量:75
  • 6Yang X S.Nature inspired meta-heuristic algorithms[M].2nd ed.Frome,UK:Luniver Press,2010:97-104. 被引量:1
  • 7刘悦婷.基于混沌和动态变异的蛙跳算法[J].计算机应用与软件,2012,29(12):137-140. 被引量:3
  • 8Wang Y,Cai Z,Zhou Y,et al.Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J].Structural Multidiscipline Optimization,2009,37(4):395-413. 被引量:1
  • 9Wang Y,Cai Z,Zhou Y.Accelerating adaptive trade-off model using shrinking space technique for constrained evolutionary optimization[J].International Journal for Numerical Methods in Engineering,2009,77(11):1501-1534. 被引量:1
  • 10韩艳丽..约束优化问题的罚函数的研究[D].河南理工大学,2011:

二级参考文献15

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:205
  • 2樊重俊,韩崇昭,胡保生,王洁.一类约束优化问题的改进遗传算法[J].控制与决策,1996,11(5):609-612. 被引量:9
  • 3席少霖,非线性最优化方法,1992年 被引量:1
  • 4Eusuff M M,Lansey K E.Optimization of water distribution network de-sign using the shuffled frog leaping algorithm[J].Journal of water sources planning and management,2003,129(3):210-225. 被引量:1
  • 5Babak Amiri,Mohammad Fathian,Ali Maroosi.Application of shuffled frog-leaping algorithm on clustering[J].Adv Manuf Technol,2009,45:199-209. 被引量:1
  • 6Elbeltagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics,2005,19(1):43-53. 被引量:1
  • 7Holland J H. Adaptation in Natural and Artificial Systems[M]. Cambridge: MIT Press,1992. 被引量:1
  • 8Gen M, CHENG Runwei. Genetic Algorithms and Engineering Design[M]. New York: Wiley- Interscience, 2000. 被引量:1
  • 9Liang J J, Runarsson T P, Mezura-Montes E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization[C]//Technical Report. Singapore: Nanyang Technological University,2006. 被引量:1
  • 10王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29. 被引量:116

共引文献77

同被引文献32

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部