期刊文献+

基于特征确定性的目标跟踪算法 被引量:5

Target tracking algorithm based on certainty measurement of the feature
下载PDF
导出
摘要 利用粒子空间分布和粒子观测概率信息定义了一种目标特征的确定性度量方法,将该度量应用到传统的多特征融合跟踪算法中,实现了目标特征加权值的自适应调整,使得不同场景及外部干扰条件下各种目标特征信息对跟踪结果的贡献达到最优。试验表明,基于确定性度量的跟踪算法较传统的单一特征跟踪及固定加权值的多特征融合跟踪算法有着更好的鲁棒性。 The certainty measurement of object feature is defined by using spatial distribution and observation proba- bility of particle. The measurement is introduced into the object tracking algorithm based on multi-feature fusion, and the weighted value of object feature is adjusted adaptively. So the object feature can adaptively adjust its contribution to tracking in different scenes and external disturbance. The results of the experiment show that the algorithm based on certainty measurement is more robust than traditional algorithm using single feature or multi-feature fusion with fixed weighted value.
出处 《激光与红外》 CAS CSCD 北大核心 2015年第5期576-579,共4页 Laser & Infrared
关键词 确定性度量 粒子滤波 目标跟踪 certainty measurement particle filter target tracking
  • 相关文献

参考文献6

二级参考文献20

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 4Porikli F. Achieving real-time object detection and tracking under extreme conditions [ J ]. Journal of Real-time Image Processing,2006,1 ( 1 ) : 33 - 40. 被引量:1
  • 5Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[ C]//IEEE Computer Vision and Pattern Recognition, 2000, Ⅱ: 142 - 149,. 被引量:1
  • 6Veenman C, Reinders M, Backer E. Resolving motion correspondence for densely moving points [ C ]//IEEE Trans. Patt. Analy. Mach. Intell,2001,23 (1) :54 -72. 被引量:1
  • 7Serby D, Koller-Meier S, Cool L V. Probabilistic object tracking using multiple features [ C ]//IEEE International Conference of Pattern Recognition (ICPR), 2004: 184 - 187. 被引量:1
  • 8Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ C ]//Proceedings of IEEE,2002,90(7) : 1151 - 1163. 被引量:1
  • 9Comanieiu D, Ramesh V, Andmeer P. Kernel-based object tracking[ C ]//IEEE Trans. Patt. Analy. Mach. Intell. , 2003,25:564 - 575. 被引量:1
  • 10Tuzel O,Porikli F, Meer P. Region covariance:A fast descriptor for detection and classification [ C ]//Proc. 9^th European Conf. on computer vision, Graz, Austria, 2006 : 589 - 600. 被引量:1

共引文献258

同被引文献40

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部