期刊文献+

酿酒酵母耐热元器件的筛选 被引量:4

Screening of Heat- resistant Device in Saccharomyces cerevisiae
原文传递
导出
摘要 以提高酿酒酵母耐热性、降低乙醇发酵过程控温能耗成本为目的,通过分析嗜热栖热菌(Thermus thermophiles)HB8热激蛋白基因,设计并构建了5个热激蛋白元器件,并导入酿酒酵母。通过梯度升温培养筛选出性能较好的耐热元器件FBA1p-groes-SLM5t,并利用恒定高温培养进一步验证了含有该元器件的酿酒酵母工程菌S.c-Gro ES具有良好的耐热性,研究表明在42℃培养48h的存活率是对照的3倍。此外,FBA1p-groes-SLM5t还能提高酵母的抗氧化性,42℃下菌株S.c-Gro ES的ROS水平比对照低37.6%,H2O2处理1 h后存活率是对照的1.62倍,说明耐热元器件在缓解热胁迫的同时对细胞的抗氧化性也有帮助。耐热工程酿酒酵母S.c-Gro ES,其40℃发酵乙醇产量相对于30℃对照和40℃对照分别提高了25%和13.8%。嗜热菌热激蛋白的引入可以明显提高酿酒酵母的耐热性及其乙醇合成效率。 In order to improve the thermotolerance of Saccharomyces cerevisiae and decrease the energy consumption cost for controlling temperature in ethanol fermentation process, 5heat shock protein (HSP) devices aredesigned and constructed, then transformed into S. cerevisiae through mining heat shock protein genes in Thermus thermophiles HB8.All the HSP devices could transcript normally at 42℃. The cell growth of the engineered yeast with heat-resistant device FBA1p-groes-SLM5tis improved 29.2% than the control under the graduallyenhanced high temperatureincubation.And thecellgrowth of S. c-GroES cultured at graduallyenhanced high temperature is nearly identical to the controlincubated at 30℃. Therefore, the heat-resistant deviceFBA1p-groes-SLM5t which endows yeast with better thermotolerant property is screened. Then, the thermotolerance of S. c-GroES is further verified through constant high temperature incubation. The engineered strain S. c-GroES shows better cell growth than the control by measurement of OD660 and cell viability under 37℃ (heat shock temperature)and 42 ℃ (heat lethal temperature).For instance, the cell viability of S. c-GroESdisplays3 times higher than the control at 42 ℃,48h. Moreover, the cell morphology of S. c-GroESis normal after heat shocked which indicates that the metabolism of S. c-GroESis not damaged. The above results of high temperature incubationshow that the engineered S. cerevisiaewith heat-resistant device FBA1p-groes-SLM5tcould adapt to various high temperature fermentation type. Meanwhile, the S. cerevisiae with heat-resistant device FBA1p-groes-SLM5tisendowed with anti-oxidation. The ROS level of S. c-GroES is 36.7% lower than the control at 42 ℃. Additionally, after treated with H2O2 of final concentration of 2mM,the cell viability of S. c-GroES shows1.62 times higher than the control.These results indicate that heat-resistant device could not only improve the thermotolerance of S. cerevisiae but also help cell defense oxidative stress. Under the 40 ℃eth
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2015年第3期75-83,共9页 China Biotechnology
基金 国家自然科学基金(21376028) 国家杰出青年科学基金项目(21425624)资助项目
关键词 酿酒酵母 耐热性 热激蛋白 乙醇 抗氧化性 Saccharomyces cerevisiae Thermotolerance Heat shock protein Ethanol Anti-oxidation
  • 相关文献

参考文献25

  • 1Abdel-Banat B M A, Hoshida H, Ano A, et al. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 2010, 85(4) : 861-867. 被引量:1
  • 2Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010, 88(1) : 381-388. 被引量:1
  • 3Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death, Molecular Cell, 2010, 40 (2), 253- 266. 被引量:1
  • 4Davidson J F, Whyte B, Bissinger P H, et al. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, PNAS, 1996, 93 (10) , 5116-5121. 被引量:1
  • 5Kenny A, Hitzig W. Bone marrow transplantation for severe combined immunodeficiency disease, European Journal of Pediatrics, 1979, 131 (3), 155-177. 被引量:1
  • 6Shahsavarai H, Hasegawa D, Yokota D, et al. Enhanced bio- ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJI4. J Biosci Bioeng, 2013, 115 ( 1 ) : 20-23. 被引量:1
  • 7Chen H Y, Chu Z M, ZbangY, et al. Over expression and characterization of the recombinant small heat shock protein from Pyrococcusfuriosus. Biotechnology Letters, 2006, 14 (28) : 1089- 1094. 被引量:1
  • 8Li D C, Yang F, Lu B,et al chaperone function of the small hyperthermophilie archaeon, Stress and Chaperones, 2011, Thermotolerance and molecular heat shock protein HSP20 from Sulfolobus solfataricus P2. Cell 17 ( 1 ) : 103-108. 被引量:1
  • 9Jia H Y, Fan Y, Feng X D, et al. Enhancing efficient microbial biotransformations by synthetic biology. Frontiers in Bioengineering and Biotechnology, 2014, 2. 被引量:1
  • 10Henne A, Briiggemann H, Raasch C, et al. The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology, 2004, 22 (5) : 547-553. 被引量:1

同被引文献12

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部