期刊文献+

复杂背景中一种特定运动目标检测与跟踪方法 被引量:7

A Method of Specific Moving Objects Detection and Tracking in Complex Background
下载PDF
导出
摘要 针对复杂环境对运动目标检测与跟踪产生的不利影响,提出一种自适应运动能量阈值结合精简彩色SIFT描述子的特定运动目标检测与跟踪方法。运用自适应运动能量阈值方法自动滤除复杂环境干扰以完成运动目标检测,由此形成目标匹配搜索域,并给出经主成份分析及精简后的彩色SIFT描述子(PCA-CSIFT)进行目标匹配,从而实现特定运动目标的连续跟踪。实验结果表明,在复杂环境下,运动目标检测方法对目标总量变化不敏感,错误率始终稳定在6.5%~34%之间。PCA-CSIFT算法在保持高可区分性的同时错误匹配率为25.33%~28%,平均每帧处理时间不超过0.26 s,具有较好的鲁棒性与实时性。 Aiming at the disadvantageous affects caused by moving object detection and tracking in complex background of video scenes,a new method of detecting and tracking specific moving objects using adaptive moving energy threshold combined with compact colored SIFT descriptor is proposed. For detection of moving objects, disturbance of complex environment is filtered out automatically by adaptive moving energy threshold. Principal Components Analysis is applied to the Colored SIFT descriptor( PCA-CSIFT) for objects matching. Thereby the continuous tracking of specific moving objects is achieved. Extensive experiments on bench datasets show that,in complex background,the moving objects tracking method is not sensitive to the amount of objects and the ratio of error is stabilized at 6. 5% ~34%. The PCA-CSIFT holds high distinctiveness and robustness with ratio of mismatches 25. 33% ~28%. The average processing time of each frame is no more than 0. 26 s,so the method meets the need of real time.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第5期219-223,共5页 Computer Engineering
基金 中央高校基本科研业务费专项基金资助项目"物联网中非结构化数据流的数据挖掘方法研究"(DL11BB21) 黑龙江省教育厅科学技术研究基金资助项目"智能供应链中非结构化数据流的数据挖掘算法研究"(12513014)
关键词 运动目标检测 运动目标跟踪 自适应运动能量阈值 复杂背景 目标匹配 moving objects detection moving objects tracking adaptive moving energy threshold complex background objects matching
  • 相关文献

参考文献10

  • 1周陈龙,胡福乔.基于Harris和几何哈希法的目标匹配[J].计算机工程,2013,39(11):205-208. 被引量:1
  • 2Atev S,Miller G,Papanikolopoulos N P.Clustering of Vehicle Trajectories[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(3):647-657. 被引量:1
  • 3Gangodkar D,Kumar P,Mittal A.Robust Segmentation of Moving Vehicles Under Complex Outdoor Condi-tions[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(4):1738-1752. 被引量:1
  • 4Cheung S C S,Kamath C.Robust Techniques for Background Subtraction in Urban Traffic Video[C]//Proceedings of SPIE Image Video Communication Processing.New York,USA:ACM Press,2004:881-892. 被引量:1
  • 5Bossu J,Hautière N,Tarel J P.Rain or Snow Detection in Image Sequences Through use of a Histogram of Orientation of Streaks[J].International Journal of Computer Vision,2011,93(3):348-367. 被引量:1
  • 6Abdel-Hakim A E,Farag A A.CSIFT:A SIFT Descriptor with Color Invariant Characteristics[C]//Proceedings of2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Computer Society,2006:458-467. 被引量:1
  • 7Yu Zhen,Chen Yunping.A Real-time Motion Detection Algorithm for Traffic Monitoring Systems Based on Consecutive Temporal Difference[C]//Proceedings of ASCC’09.Hong Kong,China:IEEE Press,2009:121-129. 被引量:1
  • 8He Kaiming,Sun Jian,Tang Xiaoou.Single Image Haze Removal Using Dark Channel Prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(12):2341-2353. 被引量:1
  • 9Ancuti C,Bekaert P.SIFT-CCH:Increasing the SIFT Distinctness by Color Co-occurrence Histograms[C]//Proceedings of the 5th International Symposium on Image and Signal Processing and Analysis.Istanbul,Turkey:IEEE Press,2007:326-331. 被引量:1
  • 10Verma A,Banerji S,Liu Chengjun.A New Color SIFT Descriptor and Methods for Image Category Classification[C]//Proceedings of 2010 IRAST International Congress on Computer Applications and Computational Science.Singapore:IEEE Press,2010:256-265. 被引量:1

二级参考文献8

同被引文献50

  • 1赵瑶池,胡祝华,胡诗雨.嵌入式网络智能视频监控系统设计与实现[J].现代电子技术,2012,35(4):68-70. 被引量:9
  • 2钱惠敏,茅耀斌,王执铨.自动选择跟踪窗尺度的Mean-Shift算法[J].中国图象图形学报,2007,12(2):245-249. 被引量:35
  • 3Wn Yi, Lira J, Yang M H. Online Object Tracking: A Benchmark [ C 1//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA : IEEE Press, 2013 : 2411-2418. 被引量:1
  • 4Shaul O, Aharon B H, Dan L, et al. Locally Orderless Tracking E C ~//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press ,2012 : 1940-1947. 被引量:1
  • 5Chenglong B,Wu Yi,Ling Haibin,et al. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient App- roach~C]//Proceedings of 2012 IEEE Conference on Com- puter Vision and Pattern Recognition. Washington D. C., USA :IEEE Press ,2012:1830-1837. 被引量:1
  • 6Thang B D,Nam V,Ge' erard M. Context Tracker : Explor- ing Supporters and Distracters in Unconstrained Environ- ments[Cl//Proeeedings of 2011 IEEE Conference on Com- puter Vision and Pattern Recognition. Washington D. C., USA : IEEE Press ,2011 : 1177-1184. 被引量:1
  • 7Sam H,Amir S, Philip H S T. Struck: Structured Output Tracking with Kernels [ C 1//Proceedings of IEEE Interna- tional Conference on Computer Vision. Washington D. C., USA ~ IEEE Press ,2011:263-270. 被引量:1
  • 8Yossi R, Carlo T, Leonidas J G. The Earth Mover' s Distance as a Metric for Image Retrieval I J ]. International Journal of Computer Vision,2000,40(2) :99-121. 被引量:1
  • 9Amit A,Ehud R,Ilan S. Robust Fragments-based TrackingUsing the Integral Histogram I C l//Proceedings of 2006 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2006: 798 -805. 被引量:1
  • 10Grabner H,Grabner M,Bischof H. Real-time Tracking via On-line Boosting [ C ]//Proceedings of British Machine Vision Conference. Bristol,UK: [ s. n. ~ ,2006:47-56. 被引量:1

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部