摘要
在独立同分布的随机环境下,建立了可迁移的两性分枝过程模型,其迁移人口数依赖当前人口数,证得此两性分枝过程是随机环境中的马氏链,并得到了第n代每个配对单元平均增长率的极限性质,从而推广了经典两性分枝过程的相关理论.
We consider a bisexual branching process with population-size-dependent immigration in the independent and identically distributed random environments. It is proved that the bisexual branching process is Markov chains in the random environments. The limited properties of the mean growth rate per mating unit of the nth generation is studied. Accordingly some limited properties known about the classical bisexual branching process in the random environments have been extended.
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2015年第3期282-285,共4页
Journal of Zhejiang University(Science Edition)
基金
安徽省高校省级自然科学研究项目(kj2013Z331)
教育部人文社科青年基金项目(12YJCZH217)
安徽省自然科学基金资助项目(1308085MA03)
关键词
随机环境
两性分枝过程
迁移依赖人口数
马氏链
极限性质
random environments
bisexual branching process
population-size-dependent immigration
Markov chain
limited properties