期刊文献+

随机环境中可迁移两性分枝过程的极限性质 被引量:2

The limited properties of the bisexual branching process with population-size-dependent immigration in random environments
下载PDF
导出
摘要 在独立同分布的随机环境下,建立了可迁移的两性分枝过程模型,其迁移人口数依赖当前人口数,证得此两性分枝过程是随机环境中的马氏链,并得到了第n代每个配对单元平均增长率的极限性质,从而推广了经典两性分枝过程的相关理论. We consider a bisexual branching process with population-size-dependent immigration in the independent and identically distributed random environments. It is proved that the bisexual branching process is Markov chains in the random environments. The limited properties of the mean growth rate per mating unit of the nth generation is studied. Accordingly some limited properties known about the classical bisexual branching process in the random environments have been extended.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2015年第3期282-285,共4页 Journal of Zhejiang University(Science Edition)
基金 安徽省高校省级自然科学研究项目(kj2013Z331) 教育部人文社科青年基金项目(12YJCZH217) 安徽省自然科学基金资助项目(1308085MA03)
关键词 随机环境 两性分枝过程 迁移依赖人口数 马氏链 极限性质 random environments bisexual branching process population-size-dependent immigration Markov chain limited properties
  • 相关文献

参考文献3

二级参考文献19

  • 1Shi-xia Ma.Bisexual Galton-Watson Branching Processes in Random Environments[J].Acta Mathematicae Applicatae Sinica,2006,22(3):419-428. 被引量:29
  • 2胡杨利,杨向群,李应求.随机环境中分枝过程的等价定理[J].应用数学学报,2007,30(3):411-421. 被引量:12
  • 3Agresti, A. On the extinction times of varying and random environment branching processes, J. Appl.Prob., 12:39-46 (1975) 被引量:1
  • 4Alsmeyer, G., Rosler, U. The bisexual Galton-Waston process with promiscuous mating: Extinction probabilities in the supercritical case. Ann. Appl. Prob., 6:922-939 (1996) 被引量:1
  • 5Bruss, F.T. A note on extinction criteria for bisexual Galton-Watson processes. J. Appl. Prob,, 21:915- 919 (1984) 被引量:1
  • 6Church, J.D. On the infinite composition products generating functions. Z. Wahrscheinlichkeitsth 19:243-256 (1971) 被引量:1
  • 7Daley, D,J. Extinction conditions for certain bisexual Galton-Watson processes. Z. Wahr., 9:315-322(1968) 被引量:1
  • 8Daley, D.J., Hull, D.A., Taylor, J.M. Bisexual Galton-Watson branching processes with superadditive mating funtions, J. Appl. Prob., 23:585-600 (1986) 被引量:1
  • 9Gonzalez, M., Molina, M. On the limit behaviour of a supercritical bisexual Galton-Watson branching processes. J. Appl. Prob., 33:960-967 (1996) 被引量:1
  • 10Gonzalez, M,, Molina, M. On the L^2-convergence of a superadditive Bisexual Galton-Watson branching processes. J. Appl. Prob., 34:575-582 (1997) 被引量:1

共引文献38

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部