摘要
在前人研究的基础上,建立了独立同分布环境下伴有移民的两性G-W分枝过程模型,其中配对函数L是上可加的,后代概率分布受一个随机环境过程影响。研究了第n代每个配对单元的平均增长率的极限行为,并在下临界情况下推得此过程{Zn}当n→∞时依分布收敛于一个有限的、正的、非退化的随机变量。
On the basis of previous conclusions,some bisexual Galton-Watson branching processes in random environments allowing immigration was established,where the mating function is additional and the independently identically distributed environment affects the law of offspring distribution.The limit behavior of the mean growth rate per mating unit was studied,and for the subcritical case,the convergence in distribution of {Zn} to a finite,positive and non-degenerate random variable as n→∞ was proved.
出处
《太原理工大学学报》
CAS
北大核心
2010年第6期779-782,共4页
Journal of Taiyuan University of Technology
基金
山西省归国留学人员科研基金项目(02090059)
关键词
两性G-W分枝过程
独立同分布随机环境
移民
极限行为
bisexual Galton-Watson branching processes
independent and identically distributed random environments
with immigration
limit behavior