期刊文献+

重力梯度张量解析信号的欧拉反褶积 被引量:8

Euler deconvolution of analytic signals of gravity gradient tensor
下载PDF
导出
摘要 利用重力梯度张量数据高精度的特点以及解析信号在确定异常体位置上的优势,将重力梯度张量解析信号代替位场的导数完成重力梯度张量解析信号的欧拉反褶积;通过在1个窗口内对1组数据点解3个欧拉方程来自动识别构造指数,从而规避了传统欧拉反褶积方法中需要事先确定构造指数的问题,同时减少了背景场的影响。研究结果表明:使用重力梯度张量的解析信号,其欧拉反褶积的解收敛性很好,能准确地判断地下异常体源的位置,有效规避背景场的影响,反演效果较好。 Depending on high resolution of gravity gradient tensor data as well as the advantage of determining the location of gravity anomalies by the analytic signal, Euler deconvolution of the analytic signal of gravity gradient tensor was solved by analytic signal instead of gravity field derivatives. Structural index was automatically identified by a set of data points in a window solving Euler equations, so there was no need to determine structural index in advance and denoise background field which traditional Euler deconvolution method had. The results show that Euler deconvolution solution converges quickly, the disturbance of background field can be eliminated effectively, and the results of this method are useful and robust.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期217-222,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金项目资助(41174061)~~
关键词 重力梯度张量 解析信号 欧拉反褶积 gravity gradient tensor analytic signal Euler deconvolution
  • 相关文献

参考文献19

  • 1曾思红..重力梯度张量正演研究及边界提取[D].中南大学,2010:
  • 2王万银.位场解析信号振幅极值位置空间变化规律研究[J].地球物理学报,2012,55(4):1288-1299. 被引量:32
  • 3张季生,高锐,李秋生,管烨,彭聪,王海燕.欧拉反褶积与解析信号相结合的位场反演方法[J].地球物理学报,2011,54(6):1634-1641. 被引量:25
  • 4Beiki M. Analytic signals of gravity gradient tensor and their application to estimate source location[J]. Geophysics, 2010, 75(6): 59-74. 被引量:1
  • 5曹书锦,朱自强,鲁光银.基于自适应模糊聚类分析的重力张量欧拉反褶积解[J].中南大学学报(自然科学版),2012,43(3):1033-1039. 被引量:12
  • 6FitzGerald D, Reid A, McInerney P. New discrimination techniques for Euler deconvolution[J]. Computers and Geosciences, 2004, 30(5): 461-469. 被引量:1
  • 7Mikhailov V, Galdeano A, Diament M, et al. Application of artificial intelligence for Euler solutions clustering[J]. Geophysics, 2003, 64(2): 168-180. 被引量:1
  • 8Gerovska D, Arauzo-Bravo M J. Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index[J]. COmputers & Geosciences, 2003, 29(8): 949-960. 被引量:1
  • 9Stavrev P Y. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies[J]. Geophysical Prospecting, 1997,45(2): 207-246. 被引量:1
  • 10Stavrev P y, Gerovska D, Arauzo-Bravo M J. Depth and shape estimates from simultaneous inversion of magnetic fields and their gradient components using differential similarity transforms[J]. Geophysical Prospecting, 2009, 57(4): 707-717. 被引量:1

二级参考文献107

共引文献95

同被引文献68

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部