期刊文献+

关于欧拉反褶积方法计算中的一点改进 被引量:12

AN IMPROVEMENT ON CALCULATION OF EULER DECOVOLUTION
下载PDF
导出
摘要 在解欧拉方程的过程中,常用的方法是最小二乘法求解。但在求解过程中计算参数会根据需要做一些调整,每调整一次计算参数,就要重复计算一次解欧拉方程的过程,这样在很大程度上影响了计算速度。为了避免这种重复,这里找到了一组系数,该系数与场值及其梯度值有关,并直接建立起场源位置与构造指数N简单的对应关系,从而把解欧拉方程的最小二乘问题转化成了解线性方程的问题,避免了解欧拉方程组时的重复计算,大大地减少了计算工作量,有效地提高了工作效率。 In the process of calculating Euler′s equation, the least squares algorithm is a common choice. With the method, the calculating parameters are, however, needed to adjust on concrete condition. Whenever we change the calculated parameters, the process of Euler equation calculation is repeated. So that the repetition influence the calculation speed. In order to avoid the repetition, we find a group of coefficients that are generated with field and its gradient data. To establish explicit linear relation between structural index based on the linear relation, depth is calculated when calculated parameters are given without touching the field data. Accordingly, it can avoid the repetition of Euler′s equation calculation and greatly reduce the works load as well as enhance efficiency.
出处 《物探化探计算技术》 CAS CSCD 2005年第2期171-174,共4页 Computing Techniques For Geophysical and Geochemical Exploration
基金 国家发改委油气远期项目(XQ-2004-07)
关键词 欧拉方程 最小二乘解 重复计算 euler equation least squares algorithm repetition calculation
  • 相关文献

参考文献5

  • 1THOMPSON D T. a new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics,1982,47:32. 被引量:1
  • 2REID A B, ALLSOP J M, GRANSER H, et al. Magnetic interpretation in three dimension using Euler deconvolution[J]. Geophysics, 1990,55: 80. 被引量:1
  • 3RAVAT D. Use of Fractal Dimension to Determine the Applicability of Euler's Homogeneity Equation for Finding Source Locations of Gravity and Magnetic Anomalies[C], SAGEEP Proceedings, 1994. 被引量:1
  • 4HUANG D, GUBBINS D, CLARK R A, et al. Combined study of Euler's homogeneity equation for gravity and magnetic field[M]. Extended Abstracts of Papers of European Association of Exploration Geophysics 57th Meeting and Technical Exhibition, Glasgow, 1995. 被引量:1
  • 5PIERRE B, KEATING. Weighted Euler deconvolution of gravity data[J]. Geophysics, 1998, 63(5): 1595. 被引量:1

同被引文献194

引证文献12

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部