摘要
在解欧拉方程的过程中,常用的方法是最小二乘法求解。但在求解过程中计算参数会根据需要做一些调整,每调整一次计算参数,就要重复计算一次解欧拉方程的过程,这样在很大程度上影响了计算速度。为了避免这种重复,这里找到了一组系数,该系数与场值及其梯度值有关,并直接建立起场源位置与构造指数N简单的对应关系,从而把解欧拉方程的最小二乘问题转化成了解线性方程的问题,避免了解欧拉方程组时的重复计算,大大地减少了计算工作量,有效地提高了工作效率。
In the process of calculating Euler′s equation, the least squares algorithm is a common choice. With the method, the calculating parameters are, however, needed to adjust on concrete condition. Whenever we change the calculated parameters, the process of Euler equation calculation is repeated. So that the repetition influence the calculation speed. In order to avoid the repetition, we find a group of coefficients that are generated with field and its gradient data. To establish explicit linear relation between structural index based on the linear relation, depth is calculated when calculated parameters are given without touching the field data. Accordingly, it can avoid the repetition of Euler′s equation calculation and greatly reduce the works load as well as enhance efficiency.
出处
《物探化探计算技术》
CAS
CSCD
2005年第2期171-174,共4页
Computing Techniques For Geophysical and Geochemical Exploration
基金
国家发改委油气远期项目(XQ-2004-07)
关键词
欧拉方程
最小二乘解
重复计算
euler equation
least squares algorithm
repetition calculation