期刊文献+

基于U分布的PolSAR图像无监督MAP分类方法 被引量:1

Unsupervised MAPclassification of PolSAR image using U distribution
原文传递
导出
摘要 结合U分布对不同匀质性极化合成孔径雷达(PolSAR)数据的广泛建模能力及Potts马尔科夫随机场(MRF)模型对像素点之间类相关性的建模能力,提出了一种基于最大后验概率(MAP)准则的PolSAR图像无监督分类方法。利用迭代条件模式算法和Metropolis采样算法对像素点的类别进行更新,迭代过程中分布参数的估计采用基于梅林(Mellin)变换的矩阵对数累积量方法,以迭代过程中出现次数最多的类别最为像素点的最终分类结果。利用NASA/JPL实验室AIRSAR系统获取旧金山湾的PolSAR数据,对本文分类算法的有效性以及分布的杂波建模能力进行了仿真验证。实验结果表明,本文分类算法的精度优于Lee分类算法,分布对PolSAR数据的杂波建模准确性总体上优于复Wishart分布、K分布和G0分布。 The accurate classification of polarimetric synthetic aperture radar (PolSAR) images is a chal- lenging task because of the existence of the speckle noise resulting in many false alarms. By combining the capability of the distribution in fitting different clutter regions in the PolSAR image and the capability of the Potts Markov random fields of modeling the contextual class information between neighboring pix- els, a new unsupervised classification algorithm for PolSAR data is proposed based on maximum a poste- riori (MAP) criterion. Firstly,the conditional iterative mode algorithm and the Metropolis sampling algo- rithm are utilized to refresh the class type of each pixel by iteratively resolving the objective function which is established by the MAP classification criterion. Secondly, at each iteration step, to get more ac- curate classification result, the distribution parameters are estimated by using the method of matrix log- cumulants which is based on the Mellin transform. Finally, the final class type of each pixel is the one which appears most times in the iteration steps. The experiment utilizing an NASA/JPL/AIRSAR po- larimetric SAR image demonstrates that the proposed algorithm gets more accurate classification result than the Lee method,and the distribution fits the clutter of the PolSAR better than the Wishart distribu- tion,K distribution and Go distribution.
机构地区 海军装备研究院
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第4期788-796,共9页 Journal of Optoelectronics·Laser
关键词 极化合成孔径雷达(PolSAR) 无监督分类 U分布 梅林(Mellin)变换 马尔科夫随机场(MRF) polarimetric synthetic aperture radar (PolSAR) unsupervised classification distribution Mellin transform Markov random field (MRF)
  • 相关文献

参考文献22

二级参考文献73

  • 1LI XiaoBin,TIAN Zheng.Multiscale stochastic hierarchical image segmentation by spectral clustering[J].Science in China(Series F),2007,50(2):198-211. 被引量:14
  • 2吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1258-1262. 被引量:51
  • 3Ferro-Famil L,Pottier E,J S Lee.Unsupervised classification and analysis of natural scenes from polarimetric interferometric SAR data .Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) .Sydney:IEEE,2001.2715-2717. 被引量:1
  • 4Ferro-Famil L,Pottier E,J S Lee.Classification and interpretation of polarimetric interferometry SAR data .Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) .Toronto:IEEE,2002.635-637. 被引量:1
  • 5Morio J,et al.A characterization of Shannon entropy and Bhattacharyya measure of contrast in polarimetric and interferometric SAR image[J].Proceedings of the IEEE,2009,97(6):1097-1108. 被引量:1
  • 6Cloude S R,Papathanassiou K P.Polarimetric SAR interferometry[J].IEEE Transactions on Geosciences and Remote Sensing,1998,36(5):1551-1565. 被引量:1
  • 7Lee J S,et al.Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J].IEEE Transactions on Geosciences and Remote Sensing,1994,32(5):1017-1028. 被引量:1
  • 8Cloude S R,Papathanassiou K P.Polarimetric optimization in radar interferometry[J].Electronics Letters,1997,33(13):1176-1178. 被引量:1
  • 9Ainsworth T L,Kelly J P,Lee J S.Classification comparisons between dual-pol,compact polarimetric and quad-pol SAR imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(5):464-471. 被引量:1
  • 10王超.全极化合成孔径雷达图像处理[M].北京:科学出版社,2007. 被引量:3

共引文献45

同被引文献11

  • 1HAN Chumming, GUO Hua-dong, SHAO Yun,et al. A method to segment SAR images based on histogramrAT. Proc. of IEEE International Geoscience and Remote Sens- ing SymposiumFC. 2005,5 : 3694-3696. 被引量:1
  • 2AI-Zahrani R A, EI-7aart A. SAR images segmentation u- sing edge information[A]. Proc. of 2nd International Con- ference on Computer Engineering and Technology (IC- CET) [C. 2010,4: V4-496-499. 被引量:1
  • 3XUE Xiao-rong,WANG Hong-fu,XlANG Fang,et al. A new method of SAR Image Segmentation Based on FCM and wavelet transform [A. Proc. of 2012 5th International Congress on Image and Signal Processing (CISP)I-O1. 2012,621-624. 被引量:1
  • 4Frakt A,Lev Ari H,AS Willsky A S,et al. A generalized levinson algorithm for covariance extension with applica- tion to multiscale autoregressive modeling [,J. IEEE Transactions on Information Theory, 2003,49 (2) : 411- 424. 被引量:1
  • 5DONG Gang-gang,WANG Na, HU Oan-bin, et al. SAR im- age segmentation combining the PM diffusion model and MRF model[,A]. Proc. of 2012 IEEE International Geosci- ence and Remote Sensing Symposium (IGARSS)I-C]. 2012,4307-4310. 被引量:1
  • 6Alparone L, Argenti F, Bianchi T, et al. Multiresolution despeckling of VHR SAR images based on MRF segmen- tation[A]. Proc. of 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) [,C]. 2010, 288-291. 被引量:1
  • 7Basseville M, Benveniste A,Willsky A S. Multiscale au- toregressive processes, part I and part lit-J]. IEEE Trans. on Signal Processing, 1992,40(8) : 1915-1955. 被引量:1
  • 8Wen X B,Tian Z. Mixture multiscale autoregressive mod- eling of SAR imagery for segmentation[J], lEE Electron- ics Letters, 2003,39(17) : 1272-1274. 被引量:1
  • 9Hughes N,Uoodhill G. Optimizing the representation of o- rientation preference maps in visual cortex[J]. Neural Computation, 2014,27 (1) 32-41. 被引量:1
  • 10徐海霞,温显斌,邹永廖,郑永春.基于Contourlet域图谱聚类和多尺度Markov模型的多光谱遥感图像分割[J].光电子.激光,2013,24(5):999-1005. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部