期刊文献+

结合Fisher判别分析和稀疏编码的图像场景分类 被引量:9

Image Scene Classification Based on Fisher Discriminative Analysis and Sparse Coding
下载PDF
导出
摘要 视觉词典法是当前广泛使用的一种图像表示方法,针对传统视觉词典法存在的表示误差大、空间信息丢失以及判别性弱等问题,提出一种基于Fisher判别稀疏编码的图像场景分类算法.首先利用近邻视觉词汇重构局部特征点,构建局部特征点的非负稀疏局部线性编码,从而有效地利用图像的空间信息;然后在非负稀疏局部线性编码的基础上引入Fisher判别约束准则,构建基于Fisher判别约束的非负稀疏局部线性编码模型,以获得图像的判别稀疏向量表示,增强图像稀疏表示的判别性;最后结合支持向量机(SVM)分类器实现场景分类.实验结果表明,该算法提高了图像稀疏表示的特征分类能力以及分类性能,更有利于场景分类任务. Bag of visual word (BoVW) is widely utilized as an image representation model. However, con-ventional BoVW construction methods usually cause large representation errors, lack of spatial information and weak discrimination. In order to overcome these drawbacks, this paper proposes an image scene classi-fication algorithm based on fisher discriminative analysis and sparse coding. Firstly, the non-negative sparse locally linear coding is constructed to encode the local features with their neighbor visual vocabularies, thus to make full use of images’ spatial information. Secondly, fisher discriminative analysis is added to construct a non-negative sparse locally linear coding model with fisher discriminative criterion constraint, thus to ob-tain the discriminative sparse representation of images. The novel model can promote the spatial separability of sparse coefficients and enforce the classification capability of images’ sparse representation. Finally, support vector machine (SVM) classifier is combined to perform scene classification. Experimental results show that our algorithm efficiently utilizes spatial information of images and incline to seek images’ dis-crimination representations, thus improves the classification performance and is more suitable for image classification.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期808-814,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61309016)
关键词 场景分类 图像表示 非负稀疏局部线性编码 Fisher判别约束准则 scene classification image representation non-negative sparse locally linear coding fisher dis-criminative criterion constraint
  • 相关文献

参考文献25

  • 1Huang Y Z, Wu Z F, Wang L, et al. Feature coding in image classification: a comprehensive study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 493-506. 被引量:1
  • 2Yan Y P, Tian X M, Yang L J, et al. Semantic-spatial matching for image classification[C]//Proceedings of IEEE International Conference on Multimedia and Exposition. Los Alamitos: IEEE Computer Society Press, 2013:1-6. 被引量:1
  • 3Zhao Q, Horace HSlp. Unsupervised approximate-semantic vocabulary learning for human action and video classifica- tion[J]. Pattern Recognition Letters. 2013, 3405): 1870-1878. 被引量:1
  • 4Nister D, Stewenius H. Scalable recognition with a vocabu- lary tree[C]//Proceedings of IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition. Los Alami- tos: IEEE Computer Society Press, 2006,2:2161-2168. 被引量:1
  • 5刘硕研,须德,冯松鹤,刘镝,裘正定.一种基于上下文语义信息的图像块视觉单词生成算法[J].电子学报,2010,38(5):1156-1161. 被引量:41
  • 6Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spa- tial pyramid matching for recognizing natural scene catego- ries[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006,2:2169-2178. 被引量:1
  • 7Bosch A, Munoz X, Oliver A, et al. Object and scene classifi- cation: what does a supervised approach provide us?[C]//Proceed- ings of IEEE International Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006,1:773-777. 被引量:1
  • 8Ergul E, Arica N. Scene classification using spatial pyramid of latent topics[C]//Proceedings of the 20th International Confer- ence on Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2010:3603-3606. 被引量:1
  • 9Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories[C]//Proceedings of IEEE Computer So- ciety Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2005, 5:524-531. 被引量:1
  • 10Li F F, Fergus R, Perona P. One-shot learning of object catego- ries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 594-611. 被引量:1

二级参考文献32

  • 1王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 2Oliva A, Tonalba A. Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal of Computer Vision,2001,42(3) : 145 - 175. 被引量:1
  • 3Vogel J, Schiele B. Semantic modeling of natural scenes for content-based image retrieval[ J]. International Journal of Computer Vision,2007,72(2):133 - 157. 被引量:1
  • 4Nowak E, Jurie F, Triggs B. Sampling strategies for bag-of-features image classification[A]. Proc of European Conference on Computer Vision (ECCV'06) [ C]. Austria: Springer, 2006.490 - 503. 被引量:1
  • 5Van Gemert J, G-eusebroek J, Veenman C, Snoek C, Smeulders A. Robust scene categorization by learning image statistics in context[A]. Proc of Int. Conf. on Computer Vision and Pattern Recognition Workshop (CVPRW'06)[C]. USA. IEEE Computer Society,2006. 105 - 122. 被引量:1
  • 6Fei-Fei L,Perona P.A Bayesian hierarchical model for learning natural scene categories [ A]. Proc. of IEEE Int. Conf. on Computer Vision and Pattern Reeosnition (CVPR'05) [ C]. USA: IEEE Computer Society,2005.524- 531. 被引量:1
  • 7Bosch A,Zisserman A. Scene classification using a hybrid generative/discriminative approach [J].IEEE Trans on Pattern Analysis and Machine Intelligence,2008,30(4) :712 - 727. 被引量:1
  • 8Jingen L, Mubarak S. Scene Modeling Using Co-Clustering [ A ]. Proc of IEEE Int. Conf on Computer Vsion ( ICCV'07) [ C ]. Brazil: IEEE Computer Society 2007.1 - 7. 被引量:1
  • 9Lazebnik S,Schmid C,Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[A].Proc.of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR'06) [ C ]. USA: IEEE Computer Society, 2006.2169 - 2178. 被引量:1
  • 10Oliva A, Torralba A. The role of context in object recognition [ J]. TRENDS in Cognitive Sciences, 2007, 11 (12) : 520 - 527. 被引量:1

共引文献68

同被引文献42

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部