期刊文献+

基于合作博弈理论的汽车概念设计优化方法 被引量:2

Optimization Method for Vehicle Concept Design Based on Cooperative Game Theory
下载PDF
导出
摘要 将质量功能展开(QFD)与合作博弈理论相结合,提出一种汽车产品顾客满意度和成本优化设计的新方法.该方法主要包括:通过市场调查和QFD分析,获取顾客需求并转化为技术需求,建立顾客满意度水平评价模型;再通过确定博弈方、博弈效用和博弈策略分组,将顾客满意度和成本的多目标优化问题转化为合作博弈理论模型;然后采用联盟博弈的Shapley值法求解最优值.最后,通过某汽车车门开发示例计算与传统方法进行对比,验证了本文所提出方法的有效性. Based on the QFD method and cooperative game theory, a new vehicle conceptual optimization design method for cost and customer satisfaction was proposed. First, the requirements of customers gained via market investigation were converted into technical requirements by QFD analysis, and a customer satisfaction index model was built. Second, by identifying the players and the payoff functions and grouping the players strategies, the multi-objective-optimization problem of the new product design was converted into the cooperative game theory model. Subsequently, the Shapley value method of coalitional gaming was used to calculate the optimized solution. Finally, the result obtained with the Shapley value method and that with the traditional methods were compared, and the effectiveness of the proposed method was verified
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第4期506-512,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51175340)
关键词 合作博弈 质量功能展开 顾客满意度 SHAPLEY值 cooperative game quality function deployment(QFD) ~ customer satisfaction Shapley value
  • 相关文献

参考文献10

  • 1宋德强,高赛,徐海红,殷纯永.汽车QFD分析[J].汽车工程,1998,20(2):108-112. 被引量:6
  • 2Zhang Zabfang,Chu Xue-ning. A new approach for conceptual design of product and maintenance [J]. International Journal of Computer Integrated Manufac- turing, 2010, 23(7): 603-618. 被引量:1
  • 3Shin Jog-ho, Jun Hong-bae, Kiritsis D, et al. A decision support method for product conceptual de- sign considering product lifeeycle factors and resource constraints [J]. The International Journal of Ad- vanced Manufacturing Technology, 2011, 52(9): 865- 886. 被引量:1
  • 4Vinodh S, Oopinath Rathods. Application of ECQFD for enabling environmentally conscious [J]. Clean Technologies and Environmental Policy, 2011,13 ( 2 ) : 381-396. 被引量:1
  • 5Osborne M J, Rubinstein A. A course in game theo- ry[M]. Boston, USA: MIT Press, 1994. 被引量:1
  • 6Song Chongzhi, Zhao Youqun, Xie Nenggang, et al.Multiobiective optimization of eighdof vehicle sus pension based on game theory [J]. Transactions of Nanjing Tniversity of Aeronautics & Astronautics, 2010, 27(2): 138-147. 被引量:1
  • 7刘光复,刘涛,柯庆镝,宋守许,周丹.基于博弈论及神经网络的主动再制造时间区域抉择方法研究[J].机械工程学报,2013,49(7):29-35. 被引量:20
  • 8Jin Sun, Zheng Cheng, Yu Kuigang, et al. Toler- ance design optimization on cost-quality trade-off u- sing the Shapley value method [J]. Journal of Manu- facturing Systems, 2010, 29(4) : 142-150. 被引量:1
  • 9郑丞,金隼,来新民.基于合作博弈的公差稳健设计方法[J].上海交通大学学报,2011,45(11):1587-1591. 被引量:14
  • 10郑丞,金隼,来新民,李余兵.基于非合作博弈的公差分配优化[J].机械工程学报,2009,45(10):159-165. 被引量:33

二级参考文献34

  • 1谢能刚,方浩,包家,汉赵雷.博弈决策分析在补偿滑轮组变幅机构多目标设计中的应用[J].机械强度,2005,27(2):202-206. 被引量:21
  • 2黄涛.博弈论教程[M].北京:首都经济贸易大学出版社,2004. 被引量:19
  • 3CHASE K W,GREENWOOD W H,LOOSLI B G,et al.Least cost tolerance allocation for mechanical assemblies with automated process selection[J].Manufacturing Review,1990,3(1):49-59. 被引量:1
  • 4DUPINET E,BALAZINSKI M,CZOGALA E.Tolerance allocation based on fuzzy logic and simulated annealing[J].Journal of Intelligent Manufacturing,1996,7(6):487-497. 被引量:1
  • 5HOFFMAN P.Analysis of tolerances and process inaccuracies in discrete part manufacturing[J].Computer Aided Design,1982,14(2):83-88. 被引量:1
  • 6SINGH P K,JAIN P K,JAIN S C.A genetic algorithm-based solution to optimal tolerance synthesis of mechanical assemblies with alternative manufacturing processes:Focus on complex tolerancing problems[J].International Journal of Production Research,2004,42(24):5 185-5 215. 被引量:1
  • 7PRABHAHARAN G,ASOKAN P,RAJENDRAN S.Sensitivity-based conceptual design and tolerance allocation using the continuous ants colony algorithm (CACO)[J].Int.J.Adv.Manuf.Technol.,2005,25:516-526. 被引量:1
  • 8LAMBERT T J,EPELMAN M A,SMITH R L.A fictitious play approach to large-scale optimization[J].Operations Research,2005,53(3):477-489. 被引量:1
  • 9OSBORNE M J.An introduction to game theory[M].Shanghai:Shanghai University of Finance&Economics Press,2005. 被引量:1
  • 10LEMKE C E,HOWSON J T.Equilibrium points of bimatrix games[J].Journal of Society for Industrial and Applied Mathematics,1964,12:413-423. 被引量:1

共引文献62

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部