期刊文献+

基于谱聚类的动态网络社区演化分析算法 被引量:1

Community Evolution Analysis Algorithm for Dynamic Networks Based on Spectral Clustering
原文传递
导出
摘要 针对复杂网络社区受到个体兴趣和迁移的影响随着时间推移而演化的问题,提出一种基于谱聚类的动态网络社区演化分析算法,试图揭示动态网络社区结构随时间的演变过程.算法融合当前时刻快照拓扑结构和上一时刻社区结构两个因素,并用随机分块模型和Dirichlet分布分别对上述两个因素建模,从而将社区演化分析形式化为优化问题.从理论上验证了社区演化分析与谱聚类是等价的,为利用谱聚类解决社区演化分析奠定理论基础.在合成数据集上的实验结果表明,相比于以规格化割为目标的谱聚类,所提方法能显著提升动态社区检测的准确性和稳定性. Due to the transfer of individuals and changes in individuals′interests,communities are complex net-works that evolve over time.We present a community evolution analysis algorithm for dynamic networks with a basis in spectral clustering,so that the evolutionary processes of community structures over time can be re-vealed.A particular focus is placed upon consideration of current time-snapshot observations and upon com-munity evolution.By employing the stochastic block model and the Dirichlet distribution for modeling,the problem of community evolution is formulated as an optimization problem.Our theoretical proof that the com-munity evolution problem is equivalent to spectral clustering lays the theoretical foundation for adopting a spectral clustering framework-based solution for modeling community evolution.Experimental results on a syn-thetic data set show that our proposed method is superior to aspectral clustering approach that takes the nor-malized cut as its objective with regards to accuracy and the detection of the stability of dynamic communities.
作者 安晶 徐森
出处 《信息与控制》 CSCD 北大核心 2015年第2期197-202,共6页 Information and Control
基金 国家自然科学基金资助项目(61105057) 江苏省属高校自然科学研究面上项目(13KJB520024) 江苏省高校"青蓝工程"资助项目
关键词 复杂网络 社区演化 随机分块模型 Dirichlet分布 谱聚类 complex network community evolution stochastic block model Dirichlet distribution spectral clustering
  • 相关文献

参考文献20

  • 1张忠元.基于字典学习的网络社团结构探测算法[J].中国科学:信息科学,2011,41(11):1343-1355. 被引量:9
  • 2淦文燕,赫南,李德毅,王建民.一种基于拓扑势的网络社区发现方法[J].软件学报,2009,20(8):2241-2254. 被引量:94
  • 3冯霞,陈卉敏,李勇.一种结合SVD的SNMF复杂网络社区发现方法[J].信息与控制,2013,42(3):387-391. 被引量:2
  • 4Lin Y R, Chi Y, Zhu S, et al. Analyzing communities and their evolutions in dynamic social networks [J]- ACM Transactions on Knowledge Discovery from Data, 2009, 3 (2) : 8. 被引量:1
  • 5Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs [J]. Bell Systems Technical Journal, 1970, 49 (2) : 291 - 307. 被引量:1
  • 6Newman M E J. Fast algorithm for detecting community structure in networks [ Jl. Physical Review E, 2004, 69 (6) : 066133. 被引量:1
  • 7Kossinets G, Watts D J. Empirical analysis of an evolving social network[ J]. Science, 2006, 311 (5757) : 88 -90. 被引量:1
  • 8Yang T, Chi Y, Zhu S, et al. A Bayesian approach toward finding communities and their evolutions in dynamic social networks[ CI//SIAM International Conference on Data Mining. Philadelphia, PA, USA: SIAM, 2009:990 -1001. 被引量:1
  • 9C hi Y, Song X, Zhou D, et al. Evolutionary spectral clustering by incorporating temporal smoothness [ C ]//Proceedings of the 13th ACM Inter- national Conference on Knowledge Discovery and Data Mining. New York, NJ, USA: ACM, 2007:153 -162. 被引量:1
  • 10Wu Z A, Cao J, Wu J J, et al. Detecting genuine communities from large-scale cocial networks: A pattern-based method[Jl. The Computer Journal, 2014, 57(9): 1343-1357. 被引量:1

二级参考文献86

共引文献107

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部