期刊文献+

基于帧差分块的混合高斯背景模型 被引量:7

Gaussian mixture background model based on inter-frame differencing blocks
下载PDF
导出
摘要 针对混合高斯背景模型计算量过大、对复杂场景的适应能力较差等问题,提出了一种基于帧差分块和自适应学习率的混合高斯背景模型改进算法。引入分块模型思想,有效结合了像素的空域信息;根据帧间差分结果,判断可疑前景区域和背景区域,提高了检测灵敏度;针对前景可疑区域采用复杂模型,保证运动目标检测的精度,反之采用简单模型降低计算量;通过自适应学习率,加速背景的形成与消退。实验结果证明该算法较好地兼顾了检测精度和计算代价。 This paper presents an improved algorithm of Gaussian mixture model based on inter-frame differencing block-ing model and adaptive learning rate for the problem of too large calculation, poor ability to adapt to the complex scenes and other issues. It introduces the blocking model, effectively integrates information of pixel airspace, based on the inter-frame difference results, it determines the suspicious foreground region and background region to improve the detection sensitivity. Complex models are used for suspicious areas to ensure the accuracy of the movingobject detection and simple models are used to reduce the amount of computation. It passes through adaptive learning rate to accelerate the for-mation and regression of the background. Experimental results show the algorithm can take into account the detection accuracy and computational cost.
作者 吴桐 王玲
出处 《计算机工程与应用》 CSCD 2014年第23期176-180,共5页 Computer Engineering and Applications
关键词 运动目标检测 帧间差分 分块模型 混合高斯模型 moving-object detection inter-frame differencing blocking model Gaussian mixture model
  • 相关文献

参考文献16

  • 1Jain R,Nagel H.On the analysis of accumulative difference pictures from image sequences of real-world scenes[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1979,1(2):206-214. 被引量:1
  • 2Barton J,Fleet D,Beauchemin S.Performance of optical flow techniques[J].International Journal of Computer Vision,1994,12(1):42-77. 被引量:1
  • 3Vosters L,Shan Caifeng,Gritti T.Real-time robust background subtraction under rapidly changing illumination conditions[J].Image and Vision Computing,2012,30:1004-1015. 被引量:1
  • 4Wren C,Azarbayejani A,Darrell T,et al.Pfinder:real-time tracking of the human body[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):780-785. 被引量:1
  • 5Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Fort Collins,Colorado,USA,1999:246-252. 被引量:1
  • 6Stauffer C,Grimson W E L.Learning patterns of activity using real-time tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):747-757. 被引量:1
  • 7李伟,陈临强,殷伟良.基于自适应学习率的背景建模方法[J].计算机工程,2011,37(15):187-189. 被引量:9
  • 8Dar-Shyang L.Effective Gaussian mixture learning for video background subtraction[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(5):827-832. 被引量:1
  • 9Dong Y,De Souza G N.Adaptive learning of multisubspace for foreground detection under illumination changes[J].Computer Vision and Image Understanding,2011,115:31-49. 被引量:1
  • 10Zhang Baochang,Zhang Bineng,Cao Yao.Complex background modeling based on texture pattern flow with adaptive threshold propagation[J].Journal of Visual Communication and Image Representation,2011,22:516-521. 被引量:1

二级参考文献28

共引文献43

同被引文献45

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部