期刊文献+

一类Kirchhoff型方程退化时整体解的存在性 被引量:1

Existence of global sloutions of the equations of degenerate Kirchhoff type
下载PDF
导出
摘要 讨论来自研究一根具有弹性的皮筋的小振幅振动的一类Kirchhoff型方程整体解的性质.内容包括其退化时解的整体存在性.主要采用势井方法来获得解的整体存在性. This article is concerned with the properties of solutions of the wave equations of degenerate Kirchhoff type with nonlinear which arises from small amplitude vibrations of an elastic string .It contains the problems of local existence of global solutions .In this article,the Banach contraction mapping theorem is used to show the local existence of the solutions .
作者 姜静香
出处 《渤海大学学报(自然科学版)》 CAS 2015年第1期10-15,共6页 Journal of Bohai University:Natural Science Edition
关键词 KIRCHHOFF方程 退化 整体解 存在 equation of Kirchhoff type degenerate global solution existence
  • 相关文献

参考文献8

  • 1Ames W F.Nonlinear partial differential equation in engineering[M].Elsevier,1972. 被引量:1
  • 2Haraux A.A new characterization of weak solutions to the damped wave equation[J].Funkc.Eqvac,1988,31:471-482. 被引量:1
  • 3Lions J L,Lions J L,Lions J L,et al.Quelques méthodes de résolution des problemes aux limites non linéaires[M].Paris:Dunod,1969. 被引量:1
  • 4Lions J L,Strauss W A.Some non-linear evolution equations[J].Bulletin de la SociétéMathématique de France,1965,93:43-96. 被引量:1
  • 5Nakao M.On solutions of the wave equation with a sublinear dissipative term[J].Journal of differential equations,1987,69(2):204-215. 被引量:1
  • 6Nakao M.Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations[J].Mathematische Zeitschrift,1991,206(1):265-276. 被引量:1
  • 7Haraux A,Zuazua E.Decay estimates for some semilinear damped hyperbolic problems[J].Archive for Rational Mechanics and Analysis,1988,100(2):191-206. 被引量:1
  • 8姜静香.一类Kirchhoff型方程退化时的弱解存在性[J].渤海大学学报(自然科学版),2013,34(2):115-120. 被引量:3

二级参考文献7

  • 1Matsuyama T. On global solutions and energy decay for the wave equations of Kichhoff type with nonlinear dcunping terms[ J]. J. Math. Anal. Ap-pl. ,1996,204:729-753. 被引量:1
  • 2Ono K. On global solutions and blow up solutions of nonlinear kirchhoflf strings with nonlinear dissipation( J). J. Math. Anal. Appl. , 1997 , 216:321 -342. 被引量:1
  • 3Lions J L. Quelques Mfethode de Resolution des probl6me aux Limites Non Lin6aire[ M]. Dunod/Gauthier Villars, Paris, 1969. 被引量:1
  • 4Lions J L, Strauss Q A. Some, nonlinear wave equations(J) Sull. Soc,Math. France,1965,93(5) :43 -96. 被引量:1
  • 5Georgiev V,Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms[ J]. J. Differential Equations, 1994,109(2) :295 -308. 被引量:1
  • 6Strauss W A. The Enei^y Methods in Nonlinear Partial Differential Equations. Net. Mat.,Rio de Janeiro, 1969. 被引量:1
  • 7Nakao M. Decay of solutions of some nonlinear wave equations in one space dimension[ J]. Funkcial. Ekvaclog, 1977,29:223 -236. 被引量:1

共引文献2

同被引文献19

  • 1Anmin Mao,Zhitao Zhang.Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition[J]. Nonlinear Analysis . 2008 (3) 被引量:3
  • 2Zhitao Zhang,Kanishka Perera.Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow[J]. Journal of Mathematical Analysis and Applications . 2005 (2) 被引量:3
  • 3Zuji Guo.??Ground states for Kirchhoff equations without compact condition(J)Journal of Differential Equations . 2015 (7) 被引量:1
  • 4MOSER J.A sharp form of an inequality by N.Trudinger. J Indiana Univ Math . 1970 被引量:1
  • 5D. G. Figueiredo,O. H. Miyagaki,B. Ruf.??Elliptic equations in R 2 with nonlinearities in the critical growth range(J)Calculus of Variations and Partial Differential Equations . 1995 (2) 被引量:1
  • 6Gongbao Li,Hongyu Ye.??Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R 3(J)Journal of Differential Equations . 2014 (2) 被引量:1
  • 7Hui Zhang,Fubao Zhang.??Ground states for the nonlinear Kirchhoff type problems(J)Journal of Mathematical Analysis and Applications . 2014 被引量:1
  • 8Wei Shuai.??Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains(J)Journal of Differential Equations . 2015 (4) 被引量:1
  • 9Qilin Xie,Shiwang Ma.??Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential(J)Journal of Mathematical Analysis and Applications . 2015 (2) 被引量:1
  • 10Xiaoming He,Wenming Zou.??Existence and concentration behavior of positive solutions for a Kirchhoff equation in R 3(J)Journal of Differential Equations . 2011 (2) 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部