期刊文献+

一类具有变时滞和脉冲的分层抑制细胞神经网络模型周期解的存在性

Existence of periodic solution for shunting inhibitory cellular neural networks with variable delays and impulses
下载PDF
导出
摘要 应用不等式技巧、Mawhin迭合度理论研究了带分布连续时滞和脉冲的SICNNs模型周期解的存在性,得到系统至少存在一个ω周期解的充分条件.最后,通过一个例子验证了结论的正确性. This paper is devoted to the global existence of one periodic solution for shunting inhibitory cellular neural networks (SICNNs) with time varying and continuously distributed delays and impulses by using inequality techniques and the Mawhin's continuation theorem ,a sufficient condition that the system there has at least a ω‐periodic solution is given . Finally , an example is provided to show the correctness of our analysis .
作者 佘连兵
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期14-19,共6页 Journal of Northwest Normal University(Natural Science)
基金 贵州省科学技术基金资助项目(LKZS[2011]2117 LKZS[2012]11 LKZS[2012]12 LKZS[2014]22)
关键词 全局指数稳定 时滞细胞神经网络 周期解 迭合度理论 globally exponential stability delayed cellular neural networks periodic solution Mawhin's continuation theorem
  • 相关文献

参考文献10

  • 1LIU Yi-guang, YOU Zhi-sheng, CAO Li-ping. Almost periodic solution of shunting inhibitory cellular neural network with fine varying and continuously distributed delay I-J]. Physics LettersA, 2007, 364(1): 17-28. 被引量:1
  • 2LIU Bing-wen, HUANG Li-huang. Almost periodic solutions of shunting inhibitory cellular neural network with time-varying delays I J]. Applied Mathematics Letters, 2007, 20(1): 70-74. 被引量:1
  • 3CAO Jin-de. A set of stability criteria for delay cellular neural networks[J]. IEEE Trans Circuits Syst I, 2001, 48.. 494-8. 被引量:1
  • 4LI Yong-kun. Global exponential stability of BAM neural networks with delays and impulses [-J ]. Chaos, Solitons ~ Fractals, 2005, 24(1).. 279- 285. 被引量:1
  • 5LI Yong-kun, XING Zhi-wei. Existence and global exponential stability of periodic solution of CNNs with impulses [J]. Chaos, Solitons ~ Fractals, 2007, 33(5): 1686-1693. 被引量:1
  • 6LI Yong-kun, XING Wen-ya, LU Ling-hong. Existence and global exponential stability of periodic solution of a class of neural networks with impulses [J]. Chaos, Solitons ~ Fractals, 2006, 27(2): 437-445. 被引量:1
  • 7GAINS R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equation I-M-]. Berlin~ Springer, 1977. 被引量:1
  • 8LI Ding-shi, WANG Xiao-hu, XU Dao-yi. Existence and global p-exponential stability of periodic solution for impulsive stochastic neural networks with delays [J]. Nonlinear Anal Hybrid Syst, 2012, 6(3): 847-858. 被引量:1
  • 9LI Yong-kun, SHU Jiang-ye. Anti-periodic solutions to impulsive shunting inhibitory cellular neural networks with distributed delays on time scales [J]. Commun Nonlinear Sci Numer Simul, 2011, 16(8): 3326-3336. 被引量:1
  • 10LI Yong-kun, CHAO Wang. Almost periodic solutions of shunting inhibitory cellular neural networks on time scales[J]. Commun Nonlinear Sci NumerSimul, 2012, 17(8): 3258-3266. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部