摘要
本文研究了一类变系数变时滞分层抑制细胞神经网络(SICNNs).在不要求激活函数全局Lipschitz和有界的条件下,利用指数二分法和Banach不动点定理,得到了系统存在唯一的概周期解的一些充分条件.一个数值例子用以说明本文结果的可行性.
In this paper, the shunting inhibitory cellular neural networks(SICNNs) with variable coefficients and time-varying delays are considered. Without assuming the global Lipschitz and hounded conditions of activation functions,sufficient conditions for the existence of a unique almost periodic solution for the system are established by using exponential dichotomy and the Banach fixed point theorem. An example is given to illustrate that the criterion are feasible.
出处
《应用数学》
CSCD
北大核心
2009年第2期352-357,共6页
Mathematica Applicata
基金
Supported by Distinguished Expert Science Foundation of Naval Aeronautical and Astronautical University and the Younger Foundation of Yantai University (SX06Z9)
关键词
概周期解
分层抑制细胞神经网络
指数二分法
不动点定理
Almost periodic solution
Shunting inhibitory cellular neural networks
Exponential dichotomy
Fixed point theorem