摘要
给出了基于Haar小波求解变系数分数阶微分方程组的数值方法。首先构造Haar小波得到分数阶积分的算子矩阵,利用积分算子矩阵把分数阶微分方程组转换为代数方程组;其次解此代数方程组求得原方程组的数值解;最后举例说明了所给出的方法的有效性和可行性。
Haar wavelet method is presented for solving a class of linear system of fractional differential equations with variable coefficients. We first construct Haar wavelet and then derive the operational matrix of fractional integration. The operational matrix of fractional integration is utilized to reduce the system of fractional differential equations to a system of algebraic equations. Thus, we get required numerical solutions by solving corresponding system of algebraic equations. In addition, an example is presented to demonstrate the efficiency and accuracy of the proposed method.
出处
《唐山师范学院学报》
2015年第2期1-5,共5页
Journal of Tangshan Normal University
基金
唐山师范学院科学研究基金项目(2014D09)