期刊文献+

一类变系数分数阶微分方程组的数值解法(英文)

A Numerical Method for a Class of Linear System of Fractional Differential Equations with Variable Coefficients
下载PDF
导出
摘要 给出了基于Haar小波求解变系数分数阶微分方程组的数值方法。首先构造Haar小波得到分数阶积分的算子矩阵,利用积分算子矩阵把分数阶微分方程组转换为代数方程组;其次解此代数方程组求得原方程组的数值解;最后举例说明了所给出的方法的有效性和可行性。 Haar wavelet method is presented for solving a class of linear system of fractional differential equations with variable coefficients. We first construct Haar wavelet and then derive the operational matrix of fractional integration. The operational matrix of fractional integration is utilized to reduce the system of fractional differential equations to a system of algebraic equations. Thus, we get required numerical solutions by solving corresponding system of algebraic equations. In addition, an example is presented to demonstrate the efficiency and accuracy of the proposed method.
出处 《唐山师范学院学报》 2015年第2期1-5,共5页 Journal of Tangshan Normal University
基金 唐山师范学院科学研究基金项目(2014D09)
关键词 分数阶微分方程 HAAR小波 算子矩阵 BLOCK Pulse函数 fractional differential equations Haar wavelet operational matrix Block Pulse Function
  • 相关文献

参考文献1

二级参考文献10

  • 1Shimizu N, Zhang Wei. Fractional calculus approach to dynamic problems of viscoelastic materials[J]. JSME international journal, Series C, Mechanical systems, machine elements and manufacturing, 1999, 42(4): 825-837. 被引量:1
  • 2Carpinteri A, Mainardi F. Fractals and fractional calculus in continuum mechanics[M]. Wien: Springer Verlag, 1997. 被引量:1
  • 3Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos, Solitons and Fractals, 1996, 7(9): 1461-1477. 被引量:1
  • 4Podlubny I. Fractional differential equations[M]. San Diego: Academic, 1999. 被引量:1
  • 5Mainardi F, Gorenflo R. On Mittag-Leffler-type functions in fractional evolution processes[J]. J. Comput. Appl. Math., 2000, 118(1-2): 283-299. 被引量:1
  • 6Ray S S, Beta R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J]. Appl. Math. Comput., 2005, 168(1): 398-410. 被引量:1
  • 7Duan Junsheng. Time- and space-fractional partial differential equations[J]. J. Math. Phys., 2005, 46(1): 13504-13511. 被引量:1
  • 8Atanackovic T M, Stankovic B. On a system of differential equations with fractional derivatives arising in rod theory[J].J. Phys. A: Math. Gen., 2004, 37(4):1241-1250. 被引量:1
  • 9Daftardar Gejji V, Babakhani A. Analysis of a system of fractional differential equations[J]. J. Math. Anal. Appl., 2004, 293(2): 511-522. 被引量:1
  • 10Dong Zengfu. Matrix analysis[M]. Harbin: Harbin Institute of Technology, 2003. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部