期刊文献+

Riccati方程初值问题的Haar小波数值解法 被引量:1

Haar wavelet solution to initial value of Riccati equation numerical value
下载PDF
导出
摘要 求解微分方程初值问题是小波分析在数学上的一个重要应用。在已有的利用H aar小波求解微分方程方法的基础上,对求解R iccati方程初值问题的离散化过程进行了改进,减小了运算量。数值实验表明,该方法在数值上精度略好于文献中利用H aar小波求解微分方程的方法。 One application of wavelets on mathematics is to solve the initial value of differential equation. The way to discrete Riccati equation has been modified based on the method to solve the initial value of differential equation using Haar wavelet in discussion. Our method has less operation. The numerical value test shows that our method has advantages in terms of precision over other methods referred to in this paper.
出处 《桂林电子工业学院学报》 2006年第2期120-123,共4页 Journal of Guilin Institute of Electronic Technology
关键词 RICCATI方程 HAAR小波 积分算子矩阵 Riccati equation Haar wavelet integral operator matrix
  • 相关文献

参考文献10

  • 1STRONG G,NGUYEN T.Wavelets and Filter Banks[M].Wellesley:Cambridge Press,1997:394. 被引量:1
  • 2JAMESON L.A wavelet-optimized,very high order adaptive grid and order numerical method[J].Sci.Comput,1998,19:1980-2013. 被引量:1
  • 3HSIAO CHUN-HUI,WANG WEN-JUNE.Haar wavelet approach to nonlinear stiff systems[J].Mathematics and Computers in Simulation,2001,57(6):347-353. 被引量:1
  • 4许建强,袁震东.变系数线性微分方程初值问题数值解的小波方法[J].数学的实践与认识,2003,33(7):123-128. 被引量:3
  • 5CHEN C F,HSIAO C H.Haar wavelet method for solving lumped and distributed-parameter systems[J].Control Theory and Applications,1997,144 (1):87-94. 被引量:1
  • 6孙延奎编著..小波分析及其应用[M].北京:机械工业出版社,2005:285.
  • 7HSIAO CHUN-HUI.Haar wavelet direct method for solving variational problems[J].Mathematics and Computers in Simulation,2004,64 (5):569-585. 被引量:1
  • 8RAZZAGHI M,ORDOKHANI Y.Solution of differential equations via rationalized Haar functions[J].Mathematics and Computers in Simulation,2001,56(3):235-246. 被引量:1
  • 9HSIAO CHUN-HUI.Haar wavelet approach to linear stiff systems[J].Mathematics and Computers in Simulation,2004,64(5):561-567. 被引量:1
  • 10LEPIK (A)(A).Numerical solution of differential equations using Haar wavelets[J].Mathematics and Computers in Simulation,2005,68(2):127-143. 被引量:1

二级参考文献3

  • 1Jin-Chao Xu, Wei-Chang. Shann Galerkin-wavelet methods for two-poin boundary value problems[J]. Numer Math, 1992, 63: 123--144. 被引量:1
  • 2Mallet S. Multiresolution approximations and wavelet orthonormal bases of L2(R) [J]. Trans Amer Math Soc,1989, 315: 69--87. 被引量:1
  • 3Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Comm Pure and Appl Math, 1988, 41:909--996. 被引量:1

共引文献2

同被引文献9

  • 1刘志国,李万社,曹凯.有理化Haar小波解第二类Fredholm积分方程[J].陕西理工学院学报(自然科学版),2005,21(3):80-83. 被引量:1
  • 2姜国.一类Volterra积分方程的有理化Haar小波解法[J].湖北师范学院学报(自然科学版),2007,27(2):48-53. 被引量:2
  • 3MALEKNEJAD K, MIRZAEE F. Using rationalized Haar wavelet for solving linear integral equations [ J ]. Applied Mathematics and Computation,2005,160:579-587. 被引量:1
  • 4REIHANI MH,ABADI Z,Rationalized Haar function method for solving Fredholm and Volterra intergral equation[J].Journal of Computational and Applied Mathematics,2007,20:12-20. 被引量:1
  • 5CHEN C F, HSIAO C H. Haar wavelet method for solving lumped and distributed parameter systems[J].IEEE Proceedings,Control Theory Applications,1997,144(1):87-94. 被引量:1
  • 6RAZZAGHIM O. Solution of differential equations via rationalized Haar functions [J].Mathematics and Computers in Simulation,2001,56(2) :235-246. 被引量:1
  • 7HSIAO C H, WANG W J. Optimal control of linear time - varying systems via Haar wavelets[J].Journal of Optimization Theory and Applications,1999,103(2) : 641-655. 被引量:1
  • 8ORDOKHANI Y. Solution of nonlinear Volterra - Fredholm - Hammerstein integral equations via rationalized Haar functions [J].Applied Mathematics and Computation ,2006,180:436-443. 被引量:1
  • 9石智,邓丽媛.求解对流扩散方程的Haar小波方法(英文)[J].应用数学,2008,21(1):98-104. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部