期刊文献+

SVM和改进粒子群算法在冲压成形优化中的应用 被引量:4

Applications of SVM and Improved Particle Swarm Algorithm to Sheet Metal Forming Optimization
下载PDF
导出
摘要 针对薄板冲压成形工艺优化中的复杂变量关系,提出了一种新的优化方法。将非线性动态改进惯性权值、非线性动态调整加速因子和引入自适应粒子变异3种策略应用于标准粒子群算法的改进中,基于支持向量机构建了工艺参数与成形质量之间精确的回归模型,并与改进粒子群优化算法相结合,对板料冲压成形工艺参数进行了优化,优化结果有效地控制了起皱和开裂缺陷,提高了板料成形质量。 In view of the complex variable relation in the optimization of sheet metal forming process, a novel optimization method is proposed. By applying three strategies (nonlinear dynamic improvement of inertial weights, nonlinear dynamic adjustment of acceleration factor and introduction of adaptive particle mutation) to the improvement of standard particle swarm optimization algorithm, an accurate regression model between process pa- rameters and forming quality is constructed based on support vector machine, and combined with improved particle swarm optimization algorithm, an optimization on the parameters of sheet metal forming is conducted. The results of optimization effectively control the cracking and wrinkling defects and improve the quality of sheet metal forming.
出处 《汽车工程》 EI CSCD 北大核心 2015年第4期485-489,共5页 Automotive Engineering
基金 国家自然科学基金(11202075) 国家863计划(2012AA111802)资助
关键词 薄板冲压 工艺参数优化 支持向量机 改进粒子群算法 sheet metal stamping process parameters optimization SVM IPSO
  • 相关文献

参考文献9

二级参考文献25

共引文献25

同被引文献30

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部