期刊文献+

多变量受控自回归滑动平均系统的极大似然辨识方法 被引量:4

M aximum likelihood identification method for a multivariable controlled autoregressive moving average system
原文传递
导出
摘要 提出了一种针对多变量受控自回归滑动平均(controlled autoregressive moving average system-like,CARMAlike)系统的极大似然参数估计算法。将CARM A-like系统分解成为m个辨识模型(m是输出量的个数),使每一个辨识模型仅包含一个需要估计的参数向量,通过极大似然方法估计每个辨识模型的参数向量,从而得到整个系统的参数估计值。仿真结果验证了该算法的有效性。 An algorithm of maximum likelihood method for parameters estimate was presented aimed at multivariable controlled autoregressive moving average (CARMA-like). The algorithm transform the CARMA-like system into m identification models (m is the output numbers), each of which only had a parameter vector which needed to be esti- mated, and then through maximum likelihood method for estimating parameter vectors of each identification model, and all parameters estimate of the system were obtained. Simulation results verified the effectiveness of the proposed algorithm.
出处 《山东大学学报(工学版)》 CAS 北大核心 2015年第2期49-55,74,共8页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助课题(61104001)
关键词 参数辨识 多变量系统 极大似然法 最小二乘法 CARMA模型 parameter estimation multivariable systems maximum likelihood least squares controlled autoregressivemoving average (CARMA) model
  • 相关文献

参考文献17

  • 1STOICA P, SODERSTROM T. Optimal instrumental variable methods for identification of multivariable linear systems [J] International Federation of Automatic Control, 1983, 19(4) :425-429. 被引量:1
  • 2JIN Qibing, WANG Zhu, WANG Jing. Least squares based iterative identification for multivariable integrating and unstable processes in closed loop [ J ]. Applied Mathematics and Computation, 2014, 242 ( 1 ) : 165-180. 被引量:1
  • 3BAO Bo, XUE Yingqin, SHENG Jie, et al. Least squares based iterative parameter estimation algorithm for multivariable con- trolled ARMA system modeling with nite measurement data [J]. Mathematical & Computer Modelling, 2011, 53 (4) : 1664- 1669. 被引量:1
  • 4HAN Heqiang, XIE Li, DING Feng, et al. Hierarchical least-squares based iterative identification for multivariable systems with moving average noises~ J~. Mathematical and Computer Modeling, 2010, 51 (9-10) :1213-1220. 被引量:1
  • 5HAN Lili, SHENG Jie, DING Feng, et al. Auxiliary model identification method for multirate multi-input systems based on least squares[ J]. Mathematical &Computer Modelling, 2009, 50(7-8):1100-1106. 被引量:1
  • 6WANG Dongqing, DING Rui, DONG Xinzhuang. Iterative parameter estimation for a class of multivariable systems based on the hierarchical identification principle and the gradient search[ J]. Circuits, Systems, and Signal Processing, 2012, 31 (6) : 2167-2177. 被引量:1
  • 7DING Feng, WANG Fangfang. Coupled multi innovation stochastic gradient type identification methods for multivariate sys- tems [ J 1- Journal of Nanjing University of Information Science & Technology : Natural Science Edition, 2014, 6 ( 1 ) : 1-16. 被引量:1
  • 8DING Feng. Hierarchical estimation algorithms for multivariable systems using measurement information[ J]. Information Sci- ences, 2014, 277( 1 ) :396-405. 被引量:1
  • 9IN Jae Myung. Tutorial on maximum likelihood estimationr J]. Journal of Mathematical Psychology. 2003. 47 ( 1 ) ..90-100. 被引量:1
  • 10ARINDAM Roy Choudhury, AMY Willis, JOHN Bunge. Consistency of a phylogenetic tree maximum likelihood estimator [ J ]. Journal of Statistical Planning and Inference, 2015 ( 161 ) :73-80. 被引量:1

同被引文献43

  • 1张贤达.用自相关确定MA模型阶数的二种新方法[J].电子学报,1994,22(7):103-105. 被引量:1
  • 2张小桃,倪维斗,李政,郑松.基于主元分析与现场数据的过热汽温动态建模研究[J].中国电机工程学报,2005,25(5):131-135. 被引量:34
  • 3邓自立.滑动平均模型参数估计的Gevers-Wouters算法的指数收敛性(英文)[J].科学技术与工程,2005,5(20):1473-1478. 被引量:2
  • 4周毅,丁锋.滑动平均模型的最小二乘辨识方法比较研究[J].科学技术与工程,2007,7(18):4570-4575. 被引量:4
  • 5Murray S,Amaan M,Christoph A,et al.Projecting disk usage based on historical trends in cloud environment[C]// The 3rd ACM Workshop on Scientific Cloud Computing.Delft,Netherlands:Association for Computing Machinery,2012. 被引量:1
  • 6Husna S H,Cui Lishan,Herny R H.Time series analysis of Web server logs for an online newspaper[C]// Proceedings of the 7th International Conference on Ubiquitous Information Management and Communication.Kota Kinabalu,Malaysia:Association for Computing Machinery,2013. 被引量:1
  • 7Ahmad A S A,El-Shafie A,Naseri M,et al.Rainfall data analyzing using moving average (MA) model and wavelet multi-resolution intelligent model for noise evaluation to improve the forecasting accuracy[J].Neural Computing and Applications,2014,25(7):1853-1861. 被引量:1
  • 8Raudys A.Optimal negative weight moving average for stock price series smoothing[C]// Conference on Computational Intelligence for Financial Engineering.London:Institute of Electrical and Electronics Engineers,2014. 被引量:1
  • 9Hansun Seng.A new approach of moving average method in time series analysis[C]// International Conference on New Media Studies.Tangerang,Indonesia:IEEE Computer Society,2013. 被引量:1
  • 10Adrian L,Gao Junbin,Zheng Lihong.Optimizing the moving average[C]//World Congress on Computational Intelligence.Brisbane,Australia:Institute of Electrical and Electronics Engineers Inc,2012. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部