摘要
针对视频目标跟踪中遮挡问题处理不佳和快速运动目标易丢失的问题,提出一种云自适应PSO(CAPSO)优化粒子滤波的视频目标跟踪算法。算法利用粒子滤波预测目标区域在视频下一帧图像的位置,结合颜色直方图统计特性,引入CAPSO算法并根据粒子适应度值将粒子集分成三个子群,分别采用不同的惯性权重生成策略,普通种群的惯性权重由X条件云发生器自适应地调整,利用云模型云滴的随机性和稳定倾向性特点,使惯性权重满足快速寻优能力又具有随机性。通过CAPSO优化,降低了粒子滤波重采样帧数,减少了算法的运算量,同时提高了搜索精度,能较好处理目标遮挡问题。并且CAPSO算法通过采用这三种不同的惯性权重生成策略,可自适应地平衡算法的全局和局部搜索能力来调节粒子的搜索范围,有效地解决了快速运动目标易丢失的问题。仿真实验结果表明,新算法对视频目标跟踪中的遮挡和快速运动目标易丢失的情况具有较好的实时性和准确性。
To improve the accuracy and robustness of occlusions and fast moving in video target tracking,a tracking algorithm based on particle filter optimized by a new cloud adaptive particle swarm optimization(CAPSO)is proposed.The possible position of moving target in the next frame image is predicted by particle filter,and the target template and candidate regions are mateched with the color histogram statistical characteristics to ensure the tracking accuracy.Then the proposed CAPSO is utilized to divide the particles into three group based on the fitness of the particle in order to adopt different inertia weight generating strategy.The inertia weight in general group is adaptively varied depending on X-conditional cloud generator.The inertia weight has randomness property because of the cloud model.Therefore,the resampling frequency of particles filter is reduced.The computational cost of particle filter is effectively reduced and it is effective to solve the target tracking problem of occlusions.In addition,the algorithm can effectively balance the global and local searching abilities of the algorithm by adopting three different inertia weight generating strategies,which can adjust the particle search range,thus being adaptable to different motion levels.Experimental results show that the proposed algorithm has a good tracking accuracy and real-time performance in case of occlusions and fast moving in video target tracking.
出处
《数据采集与处理》
CSCD
北大核心
2015年第2期452-463,共12页
Journal of Data Acquisition and Processing
基金
广西自然科学基金(2012GXNSFAA053227)资助项目
广西民族大学2012研究生教育创新计划(gxunchx2012102)资助项目
关键词
目标跟踪
粒子滤波
云模型
粒子群优化
target tracking
particle filter
cloud model
particle swarm optimization