期刊文献+

智利M_W8.8地震同震重力梯度变化 被引量:2

Characteristics of co-seismic gravity gradient changes of 2010 Chile M_W8.8 earthquake
下载PDF
导出
摘要 利用GFZ Release 05卫星重力GRACE观测数据,计算2010年2月27日智利MW8.8逆冲型地震的同震重力和重力梯度变化,分析其分布特征,可知:由GRACE探测到的同震重力变化在断层俯冲区域可达-9.5μGal,断层隆升区域可达+3.5μGal,结果与利用SNREI地球模型的位错理论计算的同震重力变化较一致,说明利用GFZ Release05 DDK5滤波数据,更能精确的反映同震重力场变化;GRACE检测的智利地震同震径向重力梯度变化Trr最大可达-600μE,位于发震断层东侧俯冲区域;通过对同震重力梯度分布特征分析,初步判断发生同震物质迁移的区域范围在断层俯冲区域为(67°—72°W,33°—38°S),在断层隆升区域为(73°—77°W,35°—39°S)。 We calculate the co-seismic gravity and gravity gradient changes correlate with Chile MW 8.8 earthquake using the satellite gravity model of GFZ release 05 which had processed by DDK5 decorrelate filtering. By analyzing the Characteristics of the results, we draw the following conclusions:① The co-seismic gravity changes are negative in fault subduction zone, which can reach-9.5μGal at peak. In fault uplift zone, it shows positive changes, and the maxim value is +3.5μGal. Our co-seismic gravity change agree very well with that calculated using a dislocation theory for a spherical earth model, which means the GFZ release 05 data have a better resolution of the gravity change for this event.② The different gravity gradient has different response to this event. By analyzing we can draw a preliminary conclusions that the area where has been through co-seismic material migration is located in(67 °—72 °W, 33 °—38 °S) for the fault subduction zone, and(73°—77°W, 35°—39°S) for fault uplift zone. And the magnitude of material migration has the character of higher in the center and lower around it.
出处 《地震地磁观测与研究》 2015年第1期60-64,共5页 Seismological and Geomagnetic Observation and Research
基金 国家自然科学基金项目(41374028 41274083 41304013) 国土资源大调查项目(1212010914015) 中央高校基本科研业务费专项资金(CHD2012TD004)资助
关键词 智利MW8.8地震 GRACE 位错理论 同震重力梯度变化 物质迁移 Chile MW 8.8 earthquake GRACE dislocation co-seismic gravity gradient changes material migration
  • 相关文献

参考文献10

  • 1Dahle C. GFZ GRACE level-2 processing standards document for level-2 product release 0005[M]. Deutsches GeoForschungsZentrum GFZ, 2013. 被引量:1
  • 2Eshagh M, Sjeberg L E. Atmospheric effects on satellite gravity gradiometry data[J]. Journal of Geodynamics, 2009, 47( 1 ) : 9-19. 被引量:1
  • 3FarJas M, Vargas G, Tassara A et al. Land-level changes produced by the Mw 8.8 2010 Chilean earthquake[J]. Science, 2010, 329 (5994) : 916-916. 被引量:1
  • 4Gross R S, Chao B F. The gravitational signature of earthquakes [M]//Gravity, Oeoid and t3eodynamics 2000. Springer Berlin Heidelberg, 2002:205 -210. 被引量:1
  • 5Heki K, Matsuo K. Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry[J]. Geophysical Research Letters, 2010, 37(24). 被引量:1
  • 6Kendrick E, Bevis M, Smalley Jr R et al. The Nazca-South America Euler vector and its rate of change[J]. Journal of South American Earth Sciences, 2003, 16(2) : 125-131. 被引量:1
  • 7Kusche J, Schmidt R, Petrovic Set al. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model [J]. Journal of Geodesy, 2009, 83 (10) : 903-913. 被引量:1
  • 8Novfik P, Grafarend E W. The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data [J]. Studia Geophysica et Geodaetica, 2006, 50 (4) : 549-582. 被引量:1
  • 9Saad A H. Understanding gravity gradients-A tutorial [J]. The Leading Edge, 2006, 25(8) : 942-949. 被引量:1
  • 10Sun W, Okubo S. Coseismic deformations detectable by satellite gravity missions: A case study of Alaska (1964, 2002) and Hokkaido(2003) earthquakes in the spectral domain[J]. Journal of Geophysical Research: Solid Earth (1978 2012), 2004, 109(B4). 被引量:1

同被引文献84

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部