期刊文献+

基于块稀疏贝叶斯学习的体域网心电压缩采样 被引量:6

ECG Compressed Sampling of Body Sensor Network Based on Block Sparse Bayesian Learning
下载PDF
导出
摘要 为有效提高体域网的实时性和降低体域网的功耗,提出一种基于块稀疏贝叶斯学习的体域网心电压缩采样方法。该方法在体域网框架下,利用压缩采样理论,在体域网的传感节点利用二进制随机观测矩阵对心电信号进行压缩采样,远程监护中心获得采样值之后,利用块稀疏贝叶斯学习重构算法和离散余弦稀疏变换矩阵对心电信号进行重构。实验结果表明,当心电信号压缩率在70%~90%时,基于块稀疏贝叶斯学习的重构算法要比其他重构算法的重构信噪比高出3 d B^21 d B。该方法能有效减少数据采样,减轻后续的数据存储、数据传输压力,提高体域网的实时性。同时该方法具有功耗低,易于硬件实现的优点。 In order to improve the real-time performance and decrease the power consumption of the body sensor network,this paper proposes an ECG compressed sampling method of body sensor network based on block sparse Bayesian learning. In the body area network framework,the proposed method,using compressive sampling theory, use binary random measurement matrix to compressive sample ECG on the sensor nodes. After measured value are transmitted to remote monitoring center,the block sparse Bayesian learning reconstructed algorithm and the discrete cosine transform matrix and are used to reconstruct the ECG signal. The experiment results show that the SNR which base on block sparse Bayesian learning reconstructed algorithm is 3 dB-21 dB higher than that of the other recon-structed algorithm when the compression rate of ECG is at 70%-90%. The method can effectively reduce the data sampling,the subsequent pressure of data storage and data transmission,and improve the real-time performance of body area network. The method also has the advantages of low power and easy to hardware implementation.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第3期401-407,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61273282) 江西省高等学校科技落地计划项目(KJLD13002)
关键词 块稀疏贝叶斯学习 体域网 心电信号 压缩采样 block sparse Bayesian learning body sensor network ECG compressed sampling
  • 相关文献

参考文献19

  • 1Bao Shudi,Poon Carmen C.Y.,Shen Lianfeng,Zha.ng Yuanting.AUTHENTICATED SYMMETRIC-KEY ESTABLISHMENT FOR MEDICAL BODY SENSOR NETWORKS[J].Journal of Electronics(China),2007,24(3):421-427. 被引量:6
  • 2宫继兵,王睿,崔莉.体域网BSN的研究进展及面临的挑战[J].计算机研究与发展,2010,47(5):737-753. 被引量:57
  • 3高翔,郭猷敏,冯天天,刘秀鹏.基于WBAN的智能康复护理系统设计和实现[J].传感技术学报,2012,25(10):1333-1339. 被引量:7
  • 4Donoho 1) L. C'ompressed Sensing[ J ]. IEEE Transactions on lnfor-ination I'liem-y ,2(K)6,52( 4) ; 1289- 1306. 被引量:1
  • 5Candes E J, Wakin M. An Introduction to Compressive Sampling[J].IKEE Signal Processing Magazine ,2008 ,.25( 2) :21-30. 被引量:1
  • 6石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:710
  • 7Mamaghanian H , Khaled N , Atienza D, et ai. Compressed Sensingfor iieal-Tinie Energy-Efficient ECG Compression on WirelessBody Sensor No(ies [ J ]. IEEE Transactions on Biomedical Engi-neering, 201 1,58(9) :2456-2466. 被引量:1
  • 8Mainyghanian H,Khaled N,Atienza I),et al. Design and Kxplorationof -Power Analog to Iniormation Conversion Based on(lonijjmssed SensingfJ]. IEEE Journal on Emerging and Selectedin Circuits and Systems,2012,2[3] :493-501. 被引量:1
  • 9Dixon A M , Allslot E G, Gangopadhyay D,el al. Compressed Sens-ing Syslem Considerations for KCG and EMG Wireless Biosensors[J]. IKKK rransactions on Hiomfuiica] Circuits and Systems,2012,6(2) : 156-166. 被引量:1
  • 10Ding ! j, Sun H, Hon K. Diret l Cardiac Arrhythmia Deteclion ViaComfut'sst^] Measurements [ J ]. Journal of GonipulaJionalIniormalion Systems,2012,8(7) :2769-2779. 被引量:1

二级参考文献101

共引文献773

同被引文献73

  • 1慕君林,马博,王云飞,任卓,刘双喜,王金星.基于深度学习的农作物病虫害检测算法综述[J].农业机械学报,2023,54(S02):301-313. 被引量:10
  • 2范慧杰,丛杨,杨云生,唐延东.基于稀疏表达的胃部疾病检测[J].科学通报,2013,58(S2):145-151. 被引量:1
  • 3KaergaardK, Jensen SH, Puthusserypady S. A comprehensiveperformance analysis of EEMD-BLMS and DWT-NN hybridalgorithms for ECG denoising[J]. Biomed Sign Proc Contr, 2016,25: 178-187. 被引量:1
  • 4YochumM, Renaud C, Jacquir S. Automatic detection of P, QRSand T patterns in 12 leads ECG signal based on CWT[J]. BiomedSign Proc Contr, 2016, 25: 46-52. 被引量:1
  • 5PadhyS, Sharma LN, Dandapat S. Multilead ECG datacompression using SVD in multiresolution domain[J]. Biomed SignProc Contr, 2015, 23: 10-18. 被引量:1
  • 6GrossiG, Lanzarotti R, Lin J. High-rate compression of ECGsignals by an accuracy-driven sparsity model relying on naturalbasis[J]. Digit Sign Proc, 2015, 45: 96-106. 被引量:1
  • 7EdwardJS, Ramu P, Swaminathan R. Imperceptibility - robustnesstradeoff studies for ECG steganography using continuous antcolony optimization[J]. Expert Syst Appl, 2015, 49: 123-135. 被引量:1
  • 8Kumar R, Kumar A, Singh GK. Hybrid method based on singularvalue decomposition and embedded zero tree wavelet technique forECG signal compression.[J]. Comput Meth Prog Biomed, 2016. 被引量:1
  • 9TawficI, Kayhan S. Compressed sensing of ECG signal forwireless system with new fast iterative method[J]. Comput MethProg Biomed, 2015, 122(3): 437-449. 被引量:1
  • 10SharmaL N. Coding ECG beats using multiscale compressedsensing based processing[J]. Comput Electr Eng, 2015, 45(C): 211-221. 被引量:1

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部