期刊文献+

乳腺MRI图像肿块分割的分段比较与方法研究 被引量:2

The Segmentation Research of Breast MRI Masses
下载PDF
导出
摘要 计算机辅助诊断通过对乳腺磁共振成像(MRI)中肿块区域的自动分割和测量为医生提供定量的诊断依据。对分割过程中不同阶段的多种算法进行实验对比,以此探索更具稳定性和准确性的分割方案:空间模糊C均值(s FCM)聚类算法在肿块的初始定位中具有抗噪声能力和稳定性强的优点,而GVF snake模型在精细分割中对局部轮廓具有较好的收敛性;结合两种算法,并运用MRI序列帧间灰度分布相似、肿块位置/形状相近的原理,最终提高整个序列的分割精度与稳定性。 CAD( computer-aided diagnosis) could be applied to assist the doctors in the diagnosis of breast cancer, by providing quantitative parameters of breast tumors with the automatic segmentation and measurements of the tumor regions in breast MRI( magnetic resonance imaging) slices. In order to find out a stable and accurate segmen-tation scheme,a variety of segmentation algorithm of different stages had been carried upon the contrast experiments. sFCM( spatial Fuzzy c-means clustering algorithm) was applied to locate the tumor roughly for its high denosing abil-ity and stability. And then GVF snake model was utilized to segment the tumor accurately for its high convergence of local boundary. Finally,relevant theory of inter-frame images was used to improve the segmentation accuracy of the whole MRI sequence,since the gray distribution and the positions of the tumors are always very similar in the adja-cent slices.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第3期387-395,共9页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(60705016 61001215 61205200) 浙江省自然科学基金项目(LY12F03003)
关键词 医学图像处理 乳腺肿块分割 帧间相关性 核磁共振成像 模糊C均值 SNAKE模型 medical image processing tumor segmentation of breast masses inter-frame correlation magnetic reso-nance Imaging Fuzzy c-means clustering algorithm snake model
  • 相关文献

参考文献15

二级参考文献67

  • 1黎新伍.基于MRF模型和EM算法的多源图像融合方法[J].传感技术学报,2006,19(2):525-529. 被引量:5
  • 2王勋,查宇飞,毕笃彦.基于多分辨率分析和分水岭的图像分割方法[J].光电工程,2007,34(6):72-76. 被引量:9
  • 3Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].J Cybemet,1973,3(3): 32-57. 被引量:1
  • 4Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981. 被引量:1
  • 5Jan A K,Murtym N,Flyrm P J.Data clustering:A review[J].ACM Computer Survey, 1999,31(3 ) :264-323. 被引量:1
  • 6Young WonLin,Lee S U.On the color image segmentation algorithm based on the thresh holding and the fuzzy C_means techniques[J].Pattern Recognitions, 1990,23(6) :935-952. 被引量:1
  • 7Ke J.Fast accurate fuzzy clustering through reduced precision[D]. University of South Florida, 1999. 被引量:1
  • 8Hung Ming_Chuan,Yang Don_Lin.An efficient fuzzy C-means clustering algorithm [C]//Proceedings of IEEE International Conference on Data Mining,SanJose,2001:225-232. 被引量:1
  • 9Tolias Y A,Panas S M.Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions[J].IEEE Trans Syst, Man, Cybernet Part, 1998,28 (3) : 359-369. 被引量:1
  • 10Krishnapuran,Keller J M.A possibilistic c-means algorithm[J].IEEE Trans Fuzzy Syst, 1993(2): 100-112. 被引量:1

共引文献48

同被引文献10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部