期刊文献+

基于MRF模型和EM算法的多源图像融合方法 被引量:5

Multisource Image Fusion Method Using Markov Random Field Model and EM Algorithm
下载PDF
导出
摘要 提出了两种图像融合方法。该方法首先利用EM-MRF算法与模糊分类方法的等价性,将EM-MRF算法引入到图像融合领域。在此基础上,利用统计模型对图像进行非监督分类的模型参数估计转化通过EM算法从不完全数据中估计模型参数的问题,并利用Markov随机场模型建立类别的先验概率、EM迭代算法进行图像分类的方法有较高的分类精度和鲁棒性,导出了基于分布式和集中式多传感器图像融合模型的两种融合方法。最后仿真试验表明,这两种融合方法既可以提高分类精度,又可以加强对噪声的抗干扰能力。 Two methods for feature fusion of remotely sensed image are presented. Expectation Maximization (EM)_Markov Random Field (MRF) algorithm is introduced to image fusion, taking advantage of the equivalence relation between EM-MRF and fuzzy classification algorithms. Distributed and centric image fusion methods are deduced respectively by using model parameter estimation in an unsupervised statistical model-based approach to transform the problems of parameter estimation from incomplete data and MRF model-based EM algorithm to improve classification accuracy and robustness. The realization and simulation experiment results show that the proposed methods can improve classification accuracy and enhance the ability of resisting noise interference.
作者 黎新伍
出处 《传感技术学报》 EI CAS CSCD 北大核心 2006年第2期525-529,共5页 Chinese Journal of Sensors and Actuators
关键词 图像融合 MARKOV随机场 EM算法 分布式融合 集中式融合 image fusion markov random field expectation maximization algorithm distributed fusion centric fusion
  • 相关文献

参考文献6

  • 1Jun Zhang.The Mean Field Theory in EM Procedures for Markov Random Fields[J].IEEE Transactions on Signal Pro cessing.1992,40(10):2570-2583. 被引量:1
  • 2Mo Dang,Gerard Givaert.Spatial Fuzzy Clustering Using EM and Markov Random Fields[J].System Research and Information Systems.1998,8:183-202. 被引量:1
  • 3S.Geman et al.Stochastic Relaxation,Gibbs Distribution and the Bayesian Restoration of Images[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1984,PAMI-6 (6):721-742. 被引量:1
  • 4瞿继双,王超,王正志.基于数据融合的遥感图象处理技术[J].中国图象图形学报(A辑),2002,7(10):985-993. 被引量:45
  • 5Jun Zhang,James W.M,David A.L.Maximum-Likelihood Parameter Estimation for Unsupervised Stochastic ModelBased Image Segmentation[J].IEEE Transactions on Image Processing.1994,3(4):404-420. 被引量:1
  • 6J.Besag.On the Statistical Analysis of Dirty Pictures[J].J.Roy.Statis.Soc,1986,18:668 673. 被引量:1

二级参考文献6

共引文献44

同被引文献35

  • 1程,李辉,张安,沈莹.基于伪点迹的多传感器异步航迹关联算法[J].传感技术学报,2006,19(3):878-881. 被引量:9
  • 2方正,佟国峰,徐心和.一种鲁棒高效的移动机器人定位方法[J].自动化学报,2007,33(1):48-53. 被引量:15
  • 3王勋,查宇飞,毕笃彦.基于多分辨率分析和分水岭的图像分割方法[J].光电工程,2007,34(6):72-76. 被引量:9
  • 4Do M N, Vetterli M. Contourlets. A Directional Multiresolution Image Representation[C]// Proc of IEEE Intet National Conference on Image Processing Rochester. NY: 2002: 357- 360. 被引量:1
  • 5Duncan D Y. Po and Minh N. Do. Directional Multiseale Modeling of ImagesUsing the Contourlet Transform[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006,15 (6) : 1610-1620. 被引量:1
  • 6Glenn R. Easley, Member, IEEE, Demetrio Labate, and Flavia Colonna. Shearlet Based Total Variation Diffusion for Denoising[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING. 2009. 2, 18(2) :260-268. 被引量:1
  • 7DO M N,Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J]. IEEE Trans. Image Processing. 2005: 1-16. 被引量:1
  • 8Bamberger R. Smith M J. A Filter Bank for the Directional Decomposition of Image: Theory and Design[J ].IEEE Trans. Signal Processing, 1992,40 (4) : 882-893. 被引量:1
  • 9匡纲要,高贵,蒋咏梅.合成孔径雷达[M].长沙:国防科技大学出版社.2007:9-11. 被引量:1
  • 10LEE J S. Speckle Suppression and Analysis for Synthetic Aperture Radar Image[J] . Opt. Eng , 1986 , 25(5) : 636-643. 被引量:1

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部