期刊文献+

基于混合PSO算法的加速度计快速标定 被引量:4

Rapid Calibration of Accelerometer Based on Hybrid Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对粒子群优化算法(PSO)在加速度计标定中存在早熟及陷入局部最优的不足,提出了基于差分进化(DE)的双种群信息共享及并行进化的混合PSO算法,并将该算法应用于加速度计快速标定。为提高混合算法的优化性能,提出了一种平衡DE算法全局探索和局部开发能力的加权变异算子,将Logistic函数的非线性特性引入到PSO算法惯性权重和DE算法加权系数的动态调整中。基准测试函数仿真表明所提出的混合算法在收敛速度、收敛精度、全局搜索性能和鲁棒性等方面明显优于PSO、DE算法;加速度计标定仿真结果表明,提出的混合算法能有效提高加速度计的标定精度。 To overcome the insufficiency of premature and trapped in a local optimum which existed in the calibration optimization of accelerometer based on particle swarm optimization(PSO),a hybrid PSO algorithm based on differential evolution was proposed by dual populations parallel evolutionary and information-sharing.It was applied to rapid calibration of accelerometer.In order to improve the optimization ability of hybrid algorithm,a weighted mutation operator was proposed which could balance global exploration and local development ability of DE algorithm,and the nonlinear properties of the Logistic function was introduced to dynamically adjust the inertia weight of PSO algorithm and the weighted coefficient of DE algorithm.Benchmark functions simulation showed that the proposed hybrid algorithm in convergence speed,convergence precision,global search performance and robustness were better than PSO and DE algorithm.And the calibration results of accelerometer showed that the hybrid algorithm could effectively improve the calibration precision of the accelerometer.
出处 《压电与声光》 CSCD 北大核心 2015年第2期232-236,241,共6页 Piezoelectrics & Acoustooptics
基金 中国博士后科学基金资助项目(2013m532173) 航空科学基金资助项目(20135184007)
关键词 粒子群优化 差分进化 加速度计标定 Logistic函数 加权变异算子 particle swarm optimization differential evolution calibration of accelerometer Logistic function weighted mutation operator
  • 相关文献

参考文献16

  • 1LOTTERS J C, SCHIPPER J, VELTINK P H,et al. Procedure for in-use calibration of triaxial accelerome- ters in medical applications[J]. Sensors and Actuators A:Physical, 1998, 61(1) :221-228. 被引量:1
  • 2KENNEDY J, EBERHART R C. Particle swarm opti- mization[C]//Piscataway, New Jersey: Proceedings of IEEE International Conference on Neural Networks,1995: 1942-1948. 被引量:1
  • 3SHI Y H, EBERHART R C. Empirical study of parti- cle swarm optimization[C]//Piscataway, New Jersey: Proceedings of the 1999 Congress on Evolutionary Computation, IEEE Service Center, 1999 : 1945-1950. 被引量:1
  • 4林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183. 被引量:48
  • 5PARSOPOULOS K E,VRAHATIS M N. UPSO:A u- nified particle swarm optimization scheme[J]. Lecture Series on Computer and Computational Sciences, 2004, 1(5) :868-873. 被引量:1
  • 6SELVAKUMAR A I, THANUSHKODI K. A new particle swarm optimization solution to nonconvex e- conomic dispatch problems [J]. IEEE Transactions on Power Systems, 2007, 22(1): 42-51. 被引量:1
  • 7MENDES R, KENNEDY J. Stochastic barycenters and beta distribution for Gaussian particle swarms [C]// Portugal:13th Portuguese Conference on Aritficial In- telligence, Lecture Notes in Computer Science, 2007, 4874:259-270. 被引量:1
  • 8SHI X H,LIANG Y C,LEE H P,et al. An improved GA and a novel PSO-GA based hybrid algorithm [J]. Information Processing Letters, 2005,93 : 255-261. 被引量:1
  • 9YI D, GE X R. An improved PSO based ANN with simulated annealing technique[J]. Neural Computing, 2005,63:527-533. 被引量:1
  • 10MONSON C K, SEPPI K D. The Kalman swarm: a new approach to particle motion in swarm optimization [C]//Seattle: Proceedings of the Genetic and Evolu- tionary Computation Conference, Springer, 2004 : 140- 150. 被引量:1

二级参考文献43

共引文献75

同被引文献24

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部