期刊文献+

考虑物品相似权重的用户相似度计算方法 被引量:11

User similarity function considering weight of items similarity
下载PDF
导出
摘要 传统的用户相似度计算方法中每个项目的权重是相同的,然而分析传统推荐算法和现实情形,用户间共同高评分项目的权重应该高于用户间共同低评分项目的权重,并且传统用户相似度计算方法没有考虑项目间的类群关系。针对上述问题,提出了一种给项目加权的方法,从而得到考虑项目相似权重的用户相似度计算方法。通过在Movie Lens数据集上进行实验,与基于传统用户相似度计算方法的协同过滤算法比较,实验结果表明,考虑了项目相似度权重的协同过滤算法能显著提高评分预测的准确性和推荐系统的质量。 In traditional user similarity function, the weight for each item is the same. However, analyzing traditional col-laborative filtering algorithms and practical case, the weight of user’s jointly high scoring item should be higher than the weight of user’s jointly low scoring item. And traditional user similarity function does not take taxa relationship between the items. To address the problem, it proposes a method to weight project and finally obtains a user similarity function which considers the similarity weight of items. The experimental results conducted on the movieLens data sets show that compared with the collaborative filtering algorithm which is based on the traditional user similarity function, the collabor-ative filtering algorithm which considers the similarity weight of items can significantly improve the ratings prediction accuracy and the quality of the recommendation system.
作者 罗军 朱文奇
出处 《计算机工程与应用》 CSCD 北大核心 2015年第8期123-127,共5页 Computer Engineering and Applications
关键词 项目相似度 相似度加权 协同过滤算法 推荐系统 item similarity weighted similarity collaborative filtering algorithm recommended system
  • 相关文献

参考文献16

  • 1Resnick P,Varian H R.Recommender systems[J].CommunACM,1997,40(3):56-58. 被引量:1
  • 2Adomavicius G,Tuzhilin A.Toward the next generationof recommender systems:a survey of the state-of-the-artand possible extensions[J].IEEE Transactions on Knowledgeand Data Engineering,2005,17(6):734-749. 被引量:1
  • 3Shardanand U,Maes P.Social information filtering:algorithmsfor automating“word of mouth”[C]//Proceedingsof the SIGCHI Conference on Human Factors in ComputingSystems,Denver,Colarado,United States,1995. 被引量:1
  • 4许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 5Lü Linyuan,Medo M,Yeung C H,et al.Recommendersystems[J].Physics Reports,2012,519(1):1-49. 被引量:1
  • 6Adomavicius G,Tuzhilin A.Towards the next generationof recommender systems:a survey of the state-of-the-artand possible extensions[J].IEEE Trans on Knowledge andData Engineering,2005,17(6):734-749. 被引量:1
  • 7Herlocker J L,Konstan J A,Borchers A,et al.An algorithmicframework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIRConference on Research and Development in InformationRetrieval,1999:230-237. 被引量:1
  • 8黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 9Choi K,Suh Y.A new similarity function for selectingneighbors for each target item in collaborative filtering[J].Knowledge-Based Systems,2013,37:146-153. 被引量:1
  • 10Albadvi A,Shahbazi M.A hybrid recommendation techniquebased on product category attributes[J].ExpertSystems with Applications,2009,36(9):11480-11488. 被引量:1

二级参考文献92

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. 被引量:1
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. 被引量:1

共引文献727

同被引文献95

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部