期刊文献+

基于耦合关系的加权Slope One算法 被引量:2

Weighted Slope One algorithm based on coupling relationship
下载PDF
导出
摘要 Slope One算法是一种基于项目的协同过滤推荐算法,它对项目属性内和属性间依赖耦合关系的考虑较为欠缺,推荐效果并不理想。基于此,提出一种基于耦合关系的加权Slope One算法。该算法构造了项目属性耦合关系模型和用户属性耦合关系模型,采取用户耦合相似度和项目耦合相似度对加权Slope One算法进行改进。本算法在Movie Lens数据集上进行验证表明具有较高的推荐准确度。 Slope One algorithm is a kind of collaborative filtering recommendation algorithm based on the item,it considers the coupling relationship between the attributes and the attributes of the project is not enough. Based on this,this paper proposed a weighted Slope One algorithm based on coupling relationship. The algorithm constructed the item properties coupling model and user attributes coupling relationship model,taking the user similarity and item coupling of weighted similarity of Slope One algorithm was improved. Validated on Movie Lens dataset show that this algorithm has higher accuracy of recommendation.
作者 沈学利 张莹
出处 《计算机应用研究》 CSCD 北大核心 2017年第12期3704-3707,共4页 Application Research of Computers
基金 国家青年科学基金资助项目(61003162)
关键词 协同过滤 SLOPE One算法 项目耦合相似度 用户耦合相似度 collaborative filtering Slope One algorithm item coupled similarity user coupled similarity
  • 相关文献

参考文献4

二级参考文献31

  • 1Adomavieius G,Tuzhilin A. Toward the next generation of rec- ommender systems:A survey of the state-of-the-art and possible extm:sions[J]. IEEE Transactions on Knowledge and Data Engi neering, 2005,17(6) : 734-749. 被引量:1
  • 2Balabanovic M, Shoham Y. Fab: content-based, collaborative rec- ommendation[J]. Communications of the ACM, 1997,40(3) : 66- 72. 被引量:1
  • 3Melville P, Mooney R, Nagarajan R. Content-boosted collabora- tive filtering for improved recommendations[C]//Proceedings of the National Conference on Artificial Intelligence. AAAI Press, MIT Press, 1999(2002) : 187-192. 被引量:1
  • 4Wang C, Cao L, Wang M, et al. Coupled nominal similarity in unsupervised learning[C]//CIKM, ACM. 2011 : 973-978. 被引量:1
  • 5Yu Y,Wang C,Gao Y, et al. A Coupled Clustering Approach for Items Recommendation[C]// The 17th Pacific-Asia Conference on Know/edge Discovery and Data Mining. Gold Coast, Austra- lia,2013. 被引量:1
  • 6Boriah S, Chandola V, Kumar V, Similarity measures for cate- gorical data: a comparative evaluation[C]//SDM 2008. 2008: 243-254. 被引量:1
  • 7Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//WWW. ACM, 2001 : 285-295. 被引量:1
  • 8http://www, grouplens, org/node/73. 被引量:1
  • 9Sarwar B ,Karypis G,Konstan J,et al. Item-based collaborative filte- ring recommendation algorithms [ C]. In: Proceedings of the 10thInternational World Wide Web Conference ,2001:285-295. 被引量:1
  • 10Lemire D, Maclachlan A. Slope One predictors for online rating- based collaborative filtering [ C ]. In:Proceedings of the Fifth SIAM International Conference on Data Mining, 2005:471-480. 被引量:1

共引文献31

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部