期刊文献+

一类具有修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性 被引量:4

Global Asymptotical Stability for a Diffusive Predator-Prey System with Modified Leslie-Gower Functional Response
下载PDF
导出
摘要 研究了一类具有扩散和修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性,推广了已有结论. This paper is devoted to generalize the global asymptotical stability result for a diffusive preda tor-prey system with modified Leslie-Gower functional response.
作者 周军
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期53-57,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11201380)
关键词 捕食-食饵模型 修正的Leslie-Gower功能函数 全局渐近稳定 predator-prey system modified Leslie-Gower functional response global asymptotical stability
  • 相关文献

参考文献6

  • 1YANG W S. Global Asymptotical Stability and Persistent Property for a Diffusive Predator-Prey System with Modified Leslie Gower Functional Response [J]. Nonlinear Analysis: Real World Application, 2013, 14(3): 1323-1330. 被引量:1
  • 2郭改慧,李兵方,岳宗敏.带交叉扩散的Ivlev捕食-食饵模型的分歧正解[J].西南大学学报(自然科学版),2013,35(1):74-78. 被引量:7
  • 3叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1994.108,205. 被引量:23
  • 4谈骏渝.一类扩散方程的初边值问题及其应用[J].西南大学学报(自然科学版),2012,34(1):11-14. 被引量:2
  • 5WANG M X, PANG P Y H. Global Asymptotic Stability of Positive Steady States of a Diffusive Ratio-Dependent Prey Predator Model[J]. Applied Mathematics Letters, 2008, 21(11): 1215-1220. 被引量:1
  • 6HSU S B. Ordinary Differential Equations with Applications [M]. Singapore: World Scientific, 1998. 被引量:1

二级参考文献7

共引文献27

同被引文献30

  • 1叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1994.108,205. 被引量:23
  • 2KELLER E, SEGEL L. Initiation of Slime Mold Aggregation Viewed as an Instability [J]. J Theoret Biol, 1970, 26: 399-415. 被引量:1
  • 3MIMURA M, TSUJIKAWA T. Aggregating Pattern Dynamics in a Chemotaxis Model Including Growth [J]. Physica A, 1996, 230. 499-543. 被引量:1
  • 4WANG X, XU Q. Spiky and Transition Layer Steady States of Chemotaxis Systems via Global Bifurcation and Helly's Compactness Theorem[J]. J Math Biol, 2013, 66: 1241- 1266. 被引量:1
  • 5WINKLER M. Absence of Collapse in a Parabolic Chemotaxis System with Signal Dependent Sensitivity [J]. Mathema- tische Nachrichten, 2010, 283: 1664-1673. 被引量:1
  • 6HILLEN T, PAINTER K. Volume Filling and Quorum Sensing in Models for Chemosensitive Movement [J]. Canadian Applied Mathematics Quarterly, 2002, 10 : 501- 543. 被引量:1
  • 7CRANDALL M, RABLNOWITZ P. Bifurcation from Simple Eigenvalues [J]. J Functional Analysis, 1971, 8: 321- 340. 被引量:1
  • 8SHI J, WANG X. On the Global Bifurcation for Quasilinear Elliptic Systems on Bounded Domains [J]. J Diff Eqs, 2009, 246: 2788-2812. 被引量:1
  • 9ALI N,JAZAR M. Global Dynamics of a Modified Leslie-Gower Predator-Prey Model with Crowley-Martin FunctionalResponses [J]. Journal of Applied Mathematics and Computing, 2013, 43: 1069 - 1075. 被引量:1
  • 10MURRAY J D. Mathematical Biology I: An Introduction [M]. Berlin: Spring, 2002. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部