期刊文献+

基于稀疏表示的近邻传播聚类算法 被引量:6

Affinity Propagation Clustering Based on Sparse Representation
下载PDF
导出
摘要 借助稀疏表示具有能较好刻画样本之间相似度的特点,提出一种基于稀疏表示的近邻传播聚类算法.仿真实验表明,本聚类算法较基于其它距离度量的算法能获得更好的聚类效果. Affinity propagation clustering is an efficient clustering algorithm based on the information propagation between neighborhood nodes.It does not require the input distance matrix to be symmetric nor each element of the matrix to be positive.Its performance is largely dependent on the distance metrics, thus it is possible to boost its performance by adapting more reliable distance metrics.Given the advantages of sparse representation in more faithful measuring the similarity between two samples,we propose an affinity clustering algorithm based on sparse representation.The experimental study on several datasets shows that the proposed algorithm performs better than the algorithms based on other distance metrics.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期220-224,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(61003203)
关键词 稀疏表示 近邻传播 聚类 距离度量 sparse representation affinity propagation clustering distance metric
  • 相关文献

参考文献12

  • 1TAN P N,STEINBACK M,KUMAR V.Introduction to Data Mining[M].Boston:Addison-Wesley,2005. 被引量:1
  • 2FREY B J,DUECK D.Clustering by Passing Messages Between Data Points[J].Science,2007,315(5814):972-976. 被引量:1
  • 3廖予良..近邻传播聚类算法研究及其在高维数据上的应用[D].华南理工大学,2012:
  • 4周世兵,徐振源,唐旭清.一种基于近邻传播算法的最佳聚类数确定方法[J].控制与决策,2011,26(8):1147-1152. 被引量:23
  • 5WRIGHT J,YANG A,GANESH A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intellignece,2009,31(2):210-227. 被引量:1
  • 6LISHAN Q,SONGCAN C,XIAOYANG T.Sparsity Preserving Projections with Applications to Face Recognition[J].Pattern Recognition,2010,43(1):331-341. 被引量:1
  • 7张春涛,郭皎,徐家良.基于稀疏表示的半监督降维方法[J].计算机工程与应用,2011,47(20):181-183. 被引量:8
  • 8肖宇,于剑.基于近邻传播算法的半监督聚类[J].软件学报,2008,19(11):2803-2813. 被引量:165
  • 9YUTAKA K,HAIYUAN W,QIAN C,Improved Affinity Propagation for Gesture Recognition Original Research Arti- cle [J].Procedia Computer Science,2013,22:983-990. 被引量:1
  • 10ARWAR B,KARYPIS G,KONSTAN J,et al.Analysis of Recommendation Algorithms for E-Commerce[C]//Pro- cessing of 2nd ACM Conference on Electronic Commerce.Providence:ACM Press,2000:158-167. 被引量:1

二级参考文献31

  • 1Duda R O,Hart P E,Stork D G.Pattern classification[M].2nd ed. New York:John:Wiley & Sons,2001. 被引量:1
  • 2Zhu X.Semi-supervised learning literature survey, 1530[R].Department of Computer Sciences, University of Wisconsin-Madison, 2008. 被引量:1
  • 3Cai D, He X F,Han J W.Semi-supervised discriminate analysis[C]// IEEE llth International Conference on Computer Vision,Rio de Janeiro, 2007: 1-7. 被引量:1
  • 4Zhang D,Zhou Z,Chen S.Semi-supervised dimensionality reduction[C]//SIAM 7th International Conference on Data Mining, Minneapolis, 2007: 629-634. 被引量:1
  • 5Wei J, Peng H.Neighborhood preserving based semi-supervised dimensionality reduction[J].Electronic Letters, 2008, 44 (20) : 1190-1191. 被引量:1
  • 6Rowels S T, Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326. 被引量:1
  • 7Cevikalp H,Verbeek J, Jurie F,et al.Semi-supervised dimensionality reduction using pairwise equivalence constraints[C]//3rd International Conference on Computer Vision Theory and Applications, Funchal, Madeira, Portugal, 2008 : 1-8. 被引量:1
  • 8He X F,Niyogi P.Locality preserving projections[C]//16th Annual Conference on Neural Information Processing System, Vancouver, 2003 : 153-160. 被引量:1
  • 9Cheng B,Yang J C,Yan S C,et al.Learning with lI -graph for image analysis[J].IEEE Transactions on Image Processing,2010, 19(4) : 858-866. 被引量:1
  • 10Doloho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4) : 1289-1306. 被引量:1

共引文献187

同被引文献51

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部