期刊文献+

基于小波分析的车轮六分力信号的去噪研究 被引量:1

Study on Denoising of Six Axis Wheel Force Signal Based on Wavelet Analysis
下载PDF
导出
摘要 介绍了利用小波分析去噪的原理,分析了小波变换模极大值法、小波系数尺度相关法和阈值法3种信号处理方法的特点,详述了利用阈值法处理信号时选择小波基、确定分解层、阈值处理和信号重构的方法。利用Matlab的小波分析工具箱对车轮纵向力信号进行去噪分析应用,结果表明:小波分析能很好的区分信号里的突变信号与多余的噪声,通过小波重构得到去噪后的车轮分向力突变的信号。本设计具有一定的应用价值。 The principle of denoising with wavelet analysis was introduced. The characteristics of three signal processing methods: wavelet transform method, wavelet coefficient scale correlation method and threshold method, were analyzed. The methods of selecting wavelet base, determining decomposition level, threshold processing and signal reconstruction during processing signal by threshold method were described. A denoising analysis on the wheel longitudinal force signal was carried out by using the wavelet analysis toolbox in Matlab. The results show that the sudden signal and excess noise can be effectively identified by wavelet analysis, and the sudden signal of wheel longitudinal force after denoising are obtained by wavelet reconstruction. The design has an application value.
出处 《湖北汽车工业学院学报》 2014年第2期51-53,59,共4页 Journal of Hubei University Of Automotive Technology
关键词 车轮六分力 车轮力信号 小波分析 阈值法 six axis wheel force wheel force signal wavelet analysis threshold method
  • 相关文献

参考文献6

二级参考文献14

  • 1蒋正言,周一届.基于小波变换的车辆动态轴重信号消噪[J].计算机测量与控制,2005,13(7):680-682. 被引量:2
  • 2孙勇,景博,覃征,张波.基于小波分析的信噪分离方法研究[J].计量学报,2006,27(2):153-155. 被引量:24
  • 3[1]Rupp A, Grubisic V, Nugebauer J. Development of a multi-component wheel force transducer--A tool to support vehicle design and validation[J].SAE,930258. 被引量:1
  • 4[2]Jodi L Sommerfeld, Richard A Meyer. Correlation and accuracy of a wheel force transducer as developed and tested on a flat-trac tire test system[J]. SAE,1999,(01):0938. 被引量:1
  • 5[3]Weiblen, Walter, Hofmann, et al. Evaluation of diffe-rent designs of wheel force transducers[J]. Sensors and Actuators, 98026. 被引量:1
  • 6程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2003.. 被引量:14
  • 7Gabor.Theory of communication[J].JIEE,1946,93:429~441. 被引量:1
  • 8Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11:674 ~ 693. 被引量:1
  • 9Marcin S,Piotr W.Neuro-wavelet classifiers for EEG signals based on rough set methods[J].IEEE Trans on Neurocomputing,2001,36(1):103 ~ 112. 被引量:1
  • 10DONOHO D L. De-noising by Soft-thresholding. IEEE Transactions on Infatuation Theory, 1995,41(3) :613 - 627. 被引量:1

共引文献44

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部